卡尔曼滤波预测中国股票有用
㈠ 金融学前沿课题
我是一个理财师,对于金融方面的知识还是比较了解一些的,而且我自己也是金融学专业的人,我们的金融学,比较前沿的课题有下面几个,希望大家可以参考:
第一、金融模型的研究是一个比较困难的前沿学科,对于经济和金融的数据化分析要求十分的高,特别是金融模型,必须在数学基础上开始建立自己的研究项目,这点要求金融学的人,必须有极高的数学素养。
第二、金融货币推理,这是一种对于货币分析的前沿研究,难度比较大,而且现在的研究范围还比较小,所以要求专业性极强,特别是对于货币知识,要求有一定的专门实际操作的经验,这点来说难度很大。
第三、金融衍生品的学术研究,是金融专业里面实用的专业,也是比较前沿的专业,金融衍生品有很多类型,比如期权期货互换之类,要求研究的人专业性比较强,同时具备一定的实际知识。
第四、金融的资金融通,是一个研究的最前沿,也是现在国际和国内比较关注的一个研究课题,不过这类研究范围很大,几乎涵盖所以的金融转换,所以研究的人必须具备极高的金融学和经济学基础。
第五、金融服务研究,这类研究是最近十几年开始的一个研究课题,主要是对于金融行业继续深化服务品质的一种研究,提高金融效率的一种研究。
上的这些研究的课题,对于金融专业来说,是最前沿的研究项目,其复杂程度很高,所以金融专业的人,要研究这些课题需要付出极大的努力,而且要有一种毅力,我在这方面有一定接触,所以希望开始研究的朋友们,把自己的精力全部的集中起来,这样才可以真正的做好研究工作!
㈡ 卡尔曼滤波如何预测
很多人将卡尔曼滤波用在股票啊,流量啊的上面,其实不是很科学,卡尔曼滤波运用的是‘惯性思维’,在普通的观测上加入了物体的运动有惯性,加速度很难突变的条件增加准确度。而客流量这种东西并没有惯性,除非你有相关模型,否则不是很适用卡尔曼滤波。PS:如果你做的是对于一个目标有多个观测数据,那么也是可以用卡尔曼滤波的,不过不需要使用状态转移矩阵了。对于一般的非机动目标,直接使用离散的常速CV模型作为状态转移矩阵,噪声在速度引入。观测矩阵要按实际情况,如果是做仿真,可以直接使用单位矩阵
卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表。
数据滤波是去除噪声还原真实数据的一种数据处理技术, Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法, 在通信, 导航, 制导与控制等多领域得到了较好的应用。
状态估计是卡尔曼滤波的重要组成部分。一般来说,根据观测数据对随机量进行定量推断就是估计问题,特别是对动态行为的状态估计,它能实现实时运行状态的估计和预测功能。比如对飞行器状态估计。状态估计对于了解和控制一个系统具有重要意义,所应用的方法属于统计学中的估计理论。最常用的是最小二乘估计,线性最小方差估计、最小方差估计、递推最小二乘估计等。其他如风险准则的贝叶斯估计、最大似然估计、随机逼近等方法也都有应用。
受噪声干扰的状态量是个随机量,不可能测得精确值,但可对它进行一系列观测,并依据一组观测值,按某种统计观点对它进行估计。使估计值尽可能准确地接近真实值,这就是最优估计。真实值与估计值之差称为估计误差。若估计值的数学期望与真实值相等,这种估计称为无偏估计。卡尔曼提出的递推最优估计理论,采用状态空间描述法,在算法采用递推形式,卡尔曼滤波能处理多维和非平稳的随机过程。