用数据分析中国股票市场
❶ 中国的股市用一些经济数据分析有用吗
有用 一国仔帆键股市念巧的好坏跟经济息息相关 例如CPI(居民消费指数)通常以3%作为轿灶界定 当CPI大于3%说明通胀率上升 这时管理层可动用一系列的调控手段来调节 例如上调存款准备金率 加息 央行公开市场操作等。所以判断股票的涨跌首先要判断宏观经济形式加以技术方面的辅助
❷ 可不可以基于海量数据预测股票
另外,市场是动态的,有时再多的海量数据也不能用来预测后期的市场,就比如2017年下半年,以往被证明操作成功率很高的三板股战法和打板战法等纷纷失效,就是因为上面维稳的介入。我们只能跟随市场的变化,及时转变自己的认知。
以上内容为股帮师姐原创,如转载请注明出处,如有不同意见,欢迎交流。
最后分享一下微信公众号:股帮师姐,获取更多股市知识。
❸ 如何用大数据炒股
我们如今生活在一个数据爆炸的世界里。网络每天响应超过60亿次的搜索请求,日处理数据超过100PB,相当于6000多座中国国家图书馆的书籍信息量总和。新浪微博每天都会发布上亿条微博。在荒无人烟的郊外,暗藏着无数大公司的信息存储中心,24小时夜以继日地运转着。
克托·迈尔-舍恩伯格在《大数据时代》一书中认为,大数据的核心就是预测,即只要数据丰富到一定程度,就可预测事情发生的可能性。例如,“从一个人乱穿马路时行进的轨迹和速度来看他能及时穿过马路的可能性”,或者通过一个人穿过马路的速度,预测车子何时应该减速从而让他及时穿过马路。
那么,如果把这种预测能力应用在股票投资上,又会如何?
目前,美国已经有许多对冲基金采用大数据技术进行投资,并且收获甚丰。中国的中证广发网络百发100指数基金(下称百发100),上线四个多月以来已上涨68%。
和传统量化投资类似,大数据投资也是依靠模型,但模型里的数据变量几何倍地增加了,在原有的金融结构化数据基础上,增加了社交言论、地理信息、卫星监测等非结构化数据,并且将这些非结构化数据进行量化,从而让模型可以吸收。
由于大数据模型对成本要求极高,业内人士认为,大数据将成为共享平台化的服务,数据和技术相当于食材和锅,基金经理和分析师可以通过平台制作自己的策略。
量化非结构数据
不要小看大数据的本领,正是这项刚刚兴起的技术已经创造了无数“未卜先知”的奇迹。
2014年,网络用大数据技术预测命中了全国18卷中12卷高考作文题目,被网友称为“神预测”。网络公司人士表示,在这个大数据池中,包含互联网积累的用户数据、历年的命题数据以及教育机构对出题方向作出的判断。
在2014年巴西世界杯比赛中,Google亦通过大数据技术成功预测了16强和8强名单。
从当年英格兰报社的信鸽、费城股票交易所的信号灯到报纸电话,再到如今的互联网、云计算、大数据,前沿技术迅速在投资领域落地。在股票策略中,大数据日益崭露头角。
做股票投资策略,需要的大数据可以分为结构化数据和非结构化数据。结构化数据,简单说就是“一堆数字”,通常包括传统量化分析中常用的CPI、PMI、市值、交易量等专业信息;非结构化数据就是社交文字、地理位置、用户行为等“还没有进行量化的信息”。
量化非结构化就是用深度模型替代简单线性模型的过程,其中所涉及的技术包括自然语言处理、语音识别、图像识别等。
金融大数据平台-通联数据CEO王政表示,通联数据采用的非结构化数据可以分为三类:第一类和人相关,包括社交言论、消费、去过的地点等;第二类与物相关,如通过正在行驶的船只和货车判断物联网情况;第三类则是卫星监测的环境信息,包括汽车流、港口装载量、新的建筑开工等情况。
卫星监测信息在美国已被投入使用,2014年Google斥资5亿美元收购了卫星公司Skybox,从而可以获得实施卫星监测信息。
结构化和非结构化数据也常常相互转化。“结构化和非结构化数据可以形象理解成把所有数据装在一个篮子里,根据应用策略不同相互转化。例如,在搜索频率调查中,用户搜索就是结构化数据;在金融策略分析中,用户搜索就是非结构化数据。”网络公司人士表示。
华尔街拿着丰厚薪水的分析师们还不知道,自己的雇主已经将大量资本投向了取代自己的机器。
2014年11月23日,高盛向Kensho公司投资1500万美元,以支持该公司的大数据平台建设。该平台很像iPhone里的Siri,可以快速整合海量数据进行分析,并且回答投资者提出的各种金融问题,例如“下月有飓风,将对美国建材板块造成什么影响?”
在Kensho处理的信息中,有80%是“非结构化”数据,例如政策文件、自然事件、地理环境、科技创新等。这类信息通常是电脑和模型难以消化的。因此,Kensho的CEO Daniel Nadler认为,华尔街过去是基于20%的信息做出100%的决策。
既然说到高盛,顺便提一下,这家华尔街老牌投行如今对大数据可谓青睐有加。除了Kensho,高盛还和Fortress信贷集团在两年前投资了8000万美元给小额融资平台On Deck Capital。这家公司的核心竞争力也是大数据,它利用大数据对中小企业进行分析,从而选出值得投资的企业并以很快的速度为之提供短期贷款。
捕捉市场情绪
上述诸多非结构化数据,归根结底是为了获得一个信息:市场情绪。
在采访中,2013年诺贝尔经济学奖得主罗伯特•席勒的观点被无数采访对象引述。可以说,大数据策略投资的创业者们无一不是席勒的信奉者。
席勒于上世纪80年代设计的投资模型至今仍被业内称道。在他的模型中,主要参考三个变量:投资项目计划的现金流、公司资本的估算成本、股票市场对投资的反应(市场情绪)。他认为,市场本身带有主观判断因素,投资者情绪会影响投资行为,而投资行为直接影响资产价格。
然而,在大数据技术诞生之前,市场情绪始终无法进行量化。
回顾人类股票投资发展史,其实就是将影响股价的因子不断量化的过程。
上世纪70年代以前,股票投资是一种定性的分析,没有数据应用,而是一门主观的艺术。随着电脑的普及,很多人开始研究驱动股价变化的规律,把传统基本面研究方法用模型代替,市盈率、市净率的概念诞生,量化投资由此兴起。
量化投资技术的兴起也带动了一批华尔街大鳄的诞生。例如,巴克莱全球投资者(BGI)在上世纪70年代就以其超越同行的电脑模型成为全球最大的基金管理公司;进入80年代,另一家基金公司文艺复兴(Renaissance)年均回报率在扣除管理费和投资收益分成等费用后仍高达34%,堪称当时最佳的对冲基金,之后十多年该基金资产亦十分稳定。
“从主观判断到量化投资,是从艺术转为科学的过程。”王政表示,上世纪70年代以前一个基本面研究员只能关注20只到50只股票,覆盖面很有限。有了量化模型就可以覆盖所有股票,这就是一个大的飞跃。此外,随着计算机处理能力的发展,信息的用量也有一个飞跃变化。过去看三个指标就够了,现在看的指标越来越多,做出的预测越来越准确。
随着21世纪的到来,量化投资又遇到了新的瓶颈,就是同质化竞争。各家机构的量化模型越来越趋同,导致投资结果同涨同跌。“能否在看到报表数据之前,用更大的数据寻找规律?”这是大数据策略创业者们试图解决的问题。
于是,量化投资的多米诺骨牌终于触碰到了席勒理论的第三层变量——市场情绪。
计算机通过分析新闻、研究报告、社交信息、搜索行为等,借助自然语言处理方法,提取有用的信息;而借助机器学习智能分析,过去量化投资只能覆盖几十个策略,大数据投资则可以覆盖成千上万个策略。
基于互联网搜索数据和社交行为的经济预测研究,已逐渐成为一个新的学术热点,并在经济、社会以及健康等领域的研究中取得了一定成果。在资本市场应用上,研究发现搜索数据可有效预测未来股市活跃度(以交易量指标衡量)及股价走势的变化。
海外就有学术研究指出,公司的名称或者相关关键词的搜索量,与该公司的股票交易量正相关。德国科学家Tobias Preis就进行了如此研究:Tobias利用谷歌搜索引擎和谷歌趋势(Google Trends),以美国标普500指数的500只股票为其样本,以2004年至2010年为观察区间,发现谷歌趋势数据的公司名称搜索量和对应股票的交易量,在每周一次的时间尺度上有高度关联性。也就是说,当某个公司名称在谷歌的搜索量活动增加时,无论股票的价格是上涨或者下跌,股票成交量与搜索量增加;反之亦然,搜索量下降,股票成交量下降。以标普500指数的样本股为基础,依据上述策略构建的模拟投资组合在六年的时间内获得了高达329%的累计收益。
在美国市场上,还有多家私募对冲基金利用Twitter和Facebook的社交数据作为反映投资者情绪和市场趋势的因子,构建对冲投资策略。利用互联网大数据进行投资策略和工具的开发已经成为世界金融投资领域的新热点。
保罗·霍丁管理的对冲基金Derwent成立于2011年5月,注册在开曼群岛,初始规模约为4000万美元, 2013年投资收益高达23.77%。该基金的投资标的包括流动性较好的股票及股票指数产品。
通联数据董事长肖风在《投资革命》中写道,Derwent的投资策略是通过实时跟踪Twitter用户的情绪,以此感知市场参与者的“贪婪与恐惧”,从而判断市场涨跌来获利。
在Derwent的网页上可以看到这样一句话:“用实时的社交媒体解码暗藏的交易机会。”保罗·霍丁在基金宣传册中表示:“多年以来,投资者已经普遍接受一种观点,即恐惧和贪婪是金融市场的驱动力。但是以前人们没有技术或数据来对人类情感进行量化。这是第四维。Derwent就是要通过即时关注Twitter中的公众情绪,指导投资。”
另一家位于美国加州的对冲基金MarketPsych与汤普森·路透合作提供了分布在119个国家不低于18864项独立指数,比如每分钟更新的心情状态(包括乐观、忧郁、快乐、害怕、生气,甚至还包括创新、诉讼及冲突情况等),而这些指数都是通过分析Twitter的数据文本,作为股市投资的信号。
此类基金还在不断涌现。金融危机后,几个台湾年轻人在波士顿组建了一家名为FlyBerry的对冲基金,口号是“Modeling the World(把世界建模)”。它的投资理念全部依托大数据技术,通过监测市场舆论和行为,对投资做出秒速判断。
关于社交媒体信息的量化应用,在股票投资之外的领域也很常见:Twitter自己也十分注重信息的开发挖掘,它与DataSift和Gnip两家公司达成了一项出售数据访问权限的协议,销售人们的想法、情绪和沟通数据,从而作为顾客的反馈意见汇总后对商业营销活动的效果进行判断。从事类似工作的公司还有DMetics,它通过对人们的购物行为进行分析,寻找影响消费者最终选择的细微原因。
回到股票世界,利用社交媒体信息做投资的公司还有StockTwits。打开这家网站,首先映入眼帘的宣传语是“看看投资者和交易员此刻正如何讨论你的股票”。正如其名,这家网站相当于“股票界的Twitter”,主要面向分析师、媒体和投资者。它通过机器和人工相结合的手段,将关于股票和市场的信息整理为140字以内的短消息供用户参考。
此外,StockTwits还整合了社交功能,并作为插件可以嵌入Twitter、Facebook和LinkedIn等主要社交平台,让人们可以轻易分享投资信息。
另一家公司Market Prophit也很有趣。这家网站的宣传语是“从社交媒体噪音中提炼市场信号”。和StockTwits相比,Market Prophit更加注重大数据的应用。它采用了先进的语义分析法,可以将Twitter里的金融对话量化为“-1(极度看空)”到“1(极度看多)”之间的投资建议。网站还根据语义量化,每天公布前十名和后十名的股票热度榜单。网站还设计了“热度地图”功能,根据投资者情绪和意见,按照不同板块,将板块内的个股按照颜色深浅进行标注,谁涨谁跌一目了然。
中国原创大数据指数
尽管大数据策略投资在美国貌似炙手可热,但事实上,其应用尚仅限于中小型对冲基金和创业平台公司。大数据策略投资第一次被大规模应用,应归于中国的百发100。
网络金融中心相关负责人表示,与欧美等成熟资本市场主要由理性机构投资者构成相比,东亚尤其是中国的股票类证券投资市场仍以散户为主,因此市场受投资者情绪和宏观政策性因素影响很大。而个人投资者行为可以更多地反映在互联网用户行为大数据上,从而为有效地预测市场情绪和趋势提供了可能。这也就是中国国内公募基金在应用互联网大数据投资方面比海外市场并不落后、甚至领先的原因。
百发100指数由网络、中证指数公司、广发基金联合研发推出,于2014年7月8日正式对市场发布,实盘运行以来一路上涨,涨幅超过60%。跟踪该指数的指数基金规模上限为30亿份,2014年9月17日正式获批,10月20日发行时一度创下26小时疯卖18亿份的“神话”。
外界都知道百发100是依托大数据的指数基金,但其背后的细节鲜为人知。
百发100数据层面的分析分为两个层面,即数据工厂的数据归集和数据处理系统的数据分析。其中数据工厂负责大数据的收集分析,例如将来源于互联网的非结构化数据进行指标化、产品化等数据量化过程;数据处理系统,可以在数据工厂递交的大数据中寻找相互统计关联,提取有效信息,最终应用于策略投资。
“其实百发100是在传统量化投资技术上融合了基于互联网大数据的市场走势和投资情绪判断。”业内人士概括道。
和传统量化投资类似,百发100对样本股的甄选要考虑财务因子、基本面因子和动量因子,包括净资产收益率(ROE)、资产收益率(ROA)、每股收益增长率(EPS)、流动负债比率、企业价值倍数(EV/EBITDA)、净利润同比增长率、股权集中度、自由流通市值以及最近一个月的个股价格收益率和波动率等。
此外,市场走势和投资情绪是在传统量化策略基础上的创新产物,也是百发100的核心竞争力。接近网络的人士称,市场情绪因子对百发100基金起决定性作用。
网络金融中心相关负责人是罗伯特•席勒观点的支持者。他认为,投资者行为和情绪对资产价格、市场走势有着巨大的影响。因此“通过互联网用户行为大数据反映的投资市场情绪、宏观经济预期和走势,成为百发100指数模型引入大数据因子的重点”。
传统量化投资主要着眼点在于对专业化金融市场基本面和交易数据的应用。但在网络金融中心相关业务负责人看来,无论是来源于专业金融市场的结构化数据,还是来源于互联网的非结构化数据,都是可以利用的数据资源。因此,前文所述的市场情绪数据,包括来源于互联网的用户行为、搜索量、市场舆情、宏观基本面预期等等,都被网络“变废为宝”,从而通过互联网找到投资者参与特征,选出投资者关注度较高的股票。
“与同期沪深300指数的表现相较,百发100更能在股票市场振荡时期、行业轮动剧烈时期、基本面不明朗时期抓住市场热点、了解投资者情绪、抗击投资波动风险。”网络金融中心相关负责人表示。
百发100选取的100只样本股更换频率是一个月,调整时间为每月第三周的周五。
业内人士指出,百发100指数的月收益率与中证100、沪深300、中证500的相关性依次提升,说明其投资风格偏向中小盘。
但事实并非如此。从样本股的构成来说,以某一期样本股为例,样本股总市值6700亿元,占A股市值4.7%。样本股的构成上,中小板21只,创业板4只,其余75只样本股均为大盘股。由此可见,百发100还是偏向大盘为主、反映主流市场走势。
样本股每个月的改变比例都不同,最极端的时候曾经有60%进行了换仓。用大数据预测热点变化,市场热点往往更迭很快;但同时也要考虑交易成本。两方面考虑,网络最后测算认为一个月换一次仓位为最佳。
样本股对百发100而言是核心机密——据说“全世界只有基金经理和指数编制机构负责人两个人知道”——都是由机器决定后,基金经理分配给不同的交易员建仓买入。基金经理也没有改变样本股的权利。
展望未来,网络金融中心相关负责人踌躇满志,“百发100指数及基金的推出,只是我们的开端和尝试,未来将形成多样化、系列投资产品。”
除了百发100,目前市场上打着大数据旗帜的基金还有2014年9月推出的南方-新浪I100和I300指数基金。
南方-新浪I100和I300是由南方基金、新浪财经和深圳证券信息公司三方联合编制的。和百发100类似,也是按照财务因子和市场情绪因子进行模型打分,按照分值将前100和前300名股票构成样本股。推出至今,这两个指数基金分别上涨了10%左右。
正如百发100的市场情绪因子来自网络,南方-新浪I100和I300的市场情绪因子全部来自新浪平台。其中包括用户在新浪财经对行情的访问热度、对股票的搜索热度;用户在新浪财经对股票相关新闻的浏览热度;股票相关微博的多空分析数据等。
此外,阿里巴巴旗下的天弘基金也有意在大数据策略上做文章。据了解,天弘基金将和阿里巴巴合作,推出大数据基金产品,最早将于2015年初问世。
天弘基金机构产品部总经理刘燕曾对媒体表示,“在传统的调研上,大数据将贡献于基础资产的研究,而以往过度依赖线下研究报告。大数据将视野拓展至了线上的数据分析,给基金经理选股带来新的逻辑。”
在BAT三巨头中,腾讯其实是最早推出指数基金的。腾讯与中证指数公司、济安金信公司合作开发的“中证腾安价值100指数”早在2013年5月就发布了,号称是国内第一家由互联网媒体与专业机构编制发布的A股指数。不过,业内人士表示,有关指数并没有真正应用大数据技术。虽然腾讯旗下的微信是目前最热的社交平台,蕴藏了大量的社交数据,但腾讯未来怎么开发,目前还并不清晰。
大数据投资平台化
中欧商学院副教授陈威如在其《平台战略》一书中提到,21世纪将成为一道分水岭,人类商业行为将全面普及平台模式,大数据金融也不例外。
然而,由于大数据模型对成本要求极高,就好比不可能每家公司都搭建自己的云计算系统一样,让每家机构自己建设大数据模型,从数据来源和处理技术方面看都是不现实的。业内人士认为,大数据未来必将成为平台化的服务。
目前,阿里、网络等企业都表示下一步方向是平台化。
蚂蚁金服所致力搭建的平台,一方面包括招财宝一类的金融产品平台,另一方面包括云计算、大数据服务平台。蚂蚁金服人士说,“我们很清楚自己的优势不是金融,而是包括电商、云计算、大数据等技术。蚂蚁金服希望用这些技术搭建一个基础平台,把这些能力开放出去,供金融机构使用。”
网络亦是如此。接近网络的人士称,未来是否向平台化发展,目前还在讨论中,但可以确定的是,“网络不是金融机构,目的不是发产品,百发100的意义在于打造影响力,而非经济效益。”
当BAT还在摸索前行时,已有嗅觉灵敏者抢占了先机,那就是通联数据。
通联数据股份公司(DataYes)由曾任博时基金副董事长肖风带队创建、万向集团投资成立,总部位于上海,公司愿景是“让投资更容易,用金融服务云平台提升投资管理效率和投研能力”。该平台7月上线公测,目前已拥有130多家机构客户,逾万名个人投资者。
通联数据目前有四个主要平台,分别是通联智能投资研究平台、通联金融大数据服务平台、通联多资产投资管理平台和金融移动办公平台。
通联智能投资研究平台包括雅典娜-智能事件研究、策略研究、智能研报三款产品,可以对基于自然语言的智能事件进行策略分析,实时跟踪市场热点,捕捉市场情绪。可以说,和百发100类似,其核心技术在于将互联网非结构化数据的量化使用。
通联金融大数据服务平台更侧重于专业金融数据的分析整理。它可以提供公司基本面数据、国内外主要证券、期货交易所的行情数据、公司公告数据、公关经济、行业动态的结构化数据、金融新闻和舆情的非结构化数据等。
假如将上述两个平台比作“收割机”,通联多资产投资管理平台就是“厨房”。在这个“厨房”里,可以进行全球跨资产的投资组合管理方案、订单管理方案、资产证券化定价分析方案等。
通联数据可以按照主题热点或者自定义关键字进行分析,构建知识图谱,将相关的新闻和股票提取做成简洁的分析框架。例如用户对特斯拉感兴趣,就可以通过主题热点看到和特斯拉相关的公司,并判断这个概念是否值得投资。“过去这个搜集过程要花费几天时间,现在只需要几分钟就可以完成。”王政表示。
“通联数据就好比一家餐馆,我们把所有原料搜集来、清洗好、准备好,同时准备了一个锅,也就是大数据存储平台。研究员和基金经理像厨师一样,用原料、工具去‘烹制’自己的策略。”王政形容道。
大数据在平台上扮演的角色,就是寻找关联关系。人类总是习惯首先构建因果关系,继而去倒推和佐证。机器学习则不然,它可以在海量数据中查获超越人类想象的关联关系。正如维克托`迈尔-舍恩伯格在《大数据时代》中所提到的,社会需要放弃它对因果关系的渴求,而仅需关注相互关系。
例如,美国超市沃尔玛通过大数据分析,发现飓风用品和蛋挞摆在一起可以提高销量,并由此创造了颇大的经济效益。如果没有大数据技术,谁能将这毫无关联的两件商品联系在一起?
通联数据通过机器学习,也能找到传统量化策略无法发现的市场联系。其中包括各家公司之间的资本关系、产品关系、竞争关系、上下游关系,也包括人与人之间的关系,例如管理团队和其他公司有没有关联,是否牵扯合作等。
未来量化研究员是否将成为一个被淘汰的职业?目前研究员的主要工作就是收集整理数据,变成投资决策,而之后这个工作将更多由机器完成。
“当初医疗科技发展时,人们也认为医生会被淘汰,但其实并不会。同理,研究员也会一直存在,但他们会更注重深入分析和调研,初级的数据搜集可以交给机器完成。”王政表示。
但当未来大数据平台并广泛应用后,是否会迅速挤压套利空间?这也是一个问题。回答根据网上资料整理
❹ 如何利用数据分析股票走势呢
这么多问题, 我就回答你MACD, 你可以找书看看
MACD指标又叫指数平滑异同移动平均线,是由查拉尔·阿佩尔(Gerald Apple)所创造的,是一种研判股票买卖时机、跟踪股价运行趋势的技术分析工具。
一、MACD指标的原理
MACD指标是根据均线的构造原理,对股票价格的收盘价进行平滑处理,求出算术平均值以后再进行计算,是一种趋向类指标。
运用快速(短期)和慢速(长期)移动平均线及其聚合与分离的征兆,加以双重平滑运算。而根据移动平均线原理发展出来的MACD,一则去除了移动平均线频繁发出假信号的缺陷,二则保留了移动平均线的效果,因此,MACD指标具有均线趋势性、稳重性、安定性等特点,是用来研判买卖股票的时机,预测股票价格涨跌的技术分析指标。
主要是通过EMA、DIF和DEA(或叫MACD、DEM)这三值之间关系的研判,DIF和DEA连接起来的移动平均线的研判以及DIF减去DEM值而绘制成的柱状图(BAR)的研判等来分析判断行情,预测股价中短期趋势的主要的股市技术分析指标。其中,DIF是核心,DEA是辅助。DIF是快速平滑移动平均线(EMA1)和慢速平滑移动平均线(EMA2)的差。BAR柱状图在股市技术软件上是用红柱和绿柱的收缩来研判行情。
❺ 股票市场的股价模型研究
放弃技术分析吧,美国市场已经抛弃的工具被中国无数中小投资者视为珍宝。要是靠看图能做准确预测,那些基本面分析的机构全都能去喝西北风了。
❻ 根据我国目前的宏观经济形式分析我国股票市场未来的走势
股票市场是市场经济的高级组织形态,是生产力发展的必然产物。社会化大生产越发达,对社会资金的融通需求就越大,股票市场筹集资金和优化资源配置的功能就越是能够充分发挥,股票市场也就越发达。
(6)用数据分析中国股票市场扩展阅读:
2013年影响股市表现因素分析:
我国经济将在2013年实现温和复苏,各项经济指标将逐步好转。与2012年每个季度经济增速均低于年初预期相比,2013年每个季度实际增速有望不断超出年初预期,预计全年GDP增速将回升到8%以上。
在全球经济低迷的背景下,中国出口仍不会有起色,但内需的增长可以抵消外需的下降。而高铁、水利等基础设施投资增速有增无减,投资仍是推动中国经济的重要动力。
❼ 在财务数据分析中,如何用时间序列分析法预测股票市场变化趋势
这个要把最近3到5年搜握好之内的财务数据做对比,看看业务的变化趋势,然后财务报表中的一些数据可以判断数据期间企业的经营情况和未来短期内的状况,个人看法光靠财务报表去预测不一定准确世铅,应该配合企业的多方信息,包括企业所在行业的皮携国家政策、国际形势、企业主营业务是否出口、出口比例、企业主要服务上下游客户、市场状况、经营团队、当前和未来几年国家经济状况及趋势等等。希望采纳
❽ 2005-2007年,中国股票市场暴涨暴跌的原因分析
2005年到2007年的牛市是疯牛,非理性暴涨,泡沫太多,所以政府要用无形的手来打压泡沫。现在的点位基本是政府比较认可的点位,所以再出现暴跌可能性不大,即便出现了政府也将出手,毕竟中国是政策市,政府始终管制着股票市场。
一、股市从998点以来上涨的回顾:
从2005年6月6日开始,中国股市进入了第二波周期为8年以上的波澜壮阔的大牛市。其时间跨度之长,空间幅度之大,不是一般人可以想象。从2005年6月6日至2007年2月16日,时间跨度是1年半左右,上涨幅度是200%。在这么短的时间内,这个幅度不可谓不大,但是其性质我归纳为恢复性上涨,为什么呢,我们可以仔细回顾一下1年半以来的市场情况。
第一阶段:熊市完结,股市试探性缓慢反弹(2005年6月~2005年11月)。
这个阶段的特点是熊市虽然已经完结,但是人们饱经摧残的脆弱心理仍不愿相信牛市已经到来,若有上涨,仍将其看作熊市中的反弹,一切都犹犹豫豫,小心翼翼,生怕惊动了沉睡的熊大哥。
只有极少数的先知勇敢的买入,因为这个时候的股票,太便宜了,真的太便宜了,遍地黄金啊,可能十年内都再没同样的机会了…....这个阶段缓慢的上涨,快速的下跌,但是又跌不破前一个底部,磨啊磨啊,终于磨掉了那些不坚定的人,然后就到第二阶段了…
第二阶段:大梦初醒(2005年11月~2006年5月)
第二阶段的特点是拉高成本,脱离估值太低不合理区域。这个阶段没什么,就是明白事理的人越来越多,怀疑的人越来越少,大家都知道机会来了,赶快搞一把再说,在第二阶段行情的末端,就是2006年5月初,形成了一个小小的疯狂波,接下来就是较大的调整…
第三阶段:峥嵘初现(2006年8月~2007年2月)
2006年5月~8月,经过对第二阶段的彻底清洗,股指从2006年8月开始,进入到显露峥嵘的岁月。从8月起,在大象股的强力拉升下,股指强势进入主升浪,这个阶段,牛是没有回头吃草的时间的,拉升再拉升,把人都搞疯狂了。营业部门庭若市,新股民开户一再创新高。这个阶段,只要你买股票,随便怎样都赚钱,股指涨得象疯狗样,所以都叫疯狗浪。但是,再怎么强大的力量也不能使股指永远上涨而不休息,牛始终会回头吃草的。在2007年1月30日到2月6日这一段时间,牛低头了,大盘6日内暴跌近500点。暴涨带来的暴跌让很多人消受不起,也给了投资者上了生动的一课,股市有风险,入市需谨慎。
一年半以来,大盘虽然经历了几个阶段,但从大趋势来讲,股指在火狗年基本属于单边上涨,投资者多有斩获。虽然股指已经上涨很高,但是趋势没有改变,股指的连创新高开拓了牛市的空间,增强了投资者的信心,吸引了大量的增量资金,为下一阶段行情的演变打下了基础和铺垫了条件。
二、2007年对于指数的不利的因素:
1)市盈率太高:现在股市的平均市盈率已经从1年半以前的15倍左右上升到现在的接近40倍,不管从哪个角度讲,这个数据“现阶段”是高了,从可持续发展的角度讲,这样下去是没有出路的。我国是处于高速发展的新兴市场,又有高速发展的宏观经济基本面支持,再加上人民币升值因素,市盈率可以适当高估,可以让人接受的长期平均市盈率波动值可以考虑在20倍到25倍(欧美港是15倍),最多也不能长期脱离30倍。所以,市盈率偏高是个问题。
2)短时间获利盘太多:1年半时间股指从1000点到3000点,这个市场的资本回报率太高,基本是暴利。一般资金年回报率在15%就有很多人开心的不得了,现在这个市场的资金年回报率超过50%的比比皆是,不是很正常。历史告诉我们,市场不会让你这么舒服的赚钱的,市场肯定会用他自己的方式让投资者抬高成本。
3)市场进入题材股阶段:一般牛市的板块炒作都大致的模式,刚开始是价值投资,然后扩散到炒作二线蓝筹股,后来炒作有实质性题材的板块,最后进入到炒作垃圾题材的阶段。现在这个市场基本是进行到疯狂炒作题材的阶段,不管消息是真是假,先炒了再说。大致浏览一下个股,每个股票都基本上都经历过了一段飙升段了,再涨的空间有多少呢。这些表明行情在逐渐在进入末期。
4)从波浪理论的角度来看,从2007年2月6日开始的上升段,很象某个稍大级别波段的5浪,5浪过后是什么呢,是对应更大级别波段的调整浪。
5)从江恩的时间周期来测算,2007年春节过后3到5周,是及其危险的时间之窗,是大波动的主要时间周期和小波动的次要时间周期的重合点。如果这段时间冲高上涨的话,则更加危险,那表明时间周期点将落在空间的顶点,这个信号预示着下跌不可避免。
总的来看,大盘股指的上涨力量在逐渐减弱,上涨的时间在逐渐缩短,下跌的时间和空间在加大,下跌的推动结构一次比前一次强。上证指数可能在3100点到3500点之间,时间在春节后3~5周内见到2007年春节后的第一个高点,然后进行一个大级别的调整,调整的第一参照点是上次暴跌的低点2541点。
同时声明一点,技术性调整的目的是什么呢,是为了下次更好上涨。在技术性调整中,可以等待市盈率逐渐跟上股价上涨的幅度,对股价形成基本面的支撑。同时也为了抬高投资者的成本,消化获利盘。也就是人们常说的,以时间换空间。
三、加息改变不了大牛势的趋势:
中国人民银行决定,自2007年3月18日起上调金融机构人民币存贷款基准利率。金融机构一年期存款基准利率上调0.27个百分点,由现行的2.52%提高到2.79%;一年期贷款基准利率上调0.27个百分点,由现行的6.12%提高到6.39%;其他各档次存贷款基准利率也相应调整。
加息对股市无疑是一个利空,对股市的确也会产生一定程度的影响,但本次加息对股市的影响不至于大到可以改变本轮大牛势的格局。因此,基金长线投资者的操作思路没有必要随着加息而进行调整。
第四次加息:2005年3月17日:
央行决定住房贷款加息。这对绝大多数购房自住的市民来说,意味着支付房贷的负担将增加5%至10%。沪综指当日下跌了0.96%,次日再跌1.29%。稍作反弹后,沪综指一路下跌,最低至998.23点。
第五次加息:2006年4月28日:
2006年4月28日,金融机构贷款利率上调0.27个百分点,由现行的5.58%提高到5.85%。28日,沪指低开14点,最高1445,收盘 1440,涨23点,大涨1.66%。其后依然维持上涨势头,并在5月份展开了一波历史上少见的逼空行情,到2006年7月5日最高摸至1757点。
综上所述,在前四次加息中,由于房地产等占的主导比较大,受影响也比较大,必然会对大盘产生很大的影响,同时股市还没有改革,工商银行,中国银行等大市值还没有引进。但现在除了市值发生变化外,关键是投资者已经逐渐适应了加息。从去年的加息看,股市已经发生了根本性的变化,加息不再是毒药,而是催生股市健康发展的良药。有些人并不理解加息的真正涵义以及用途,只会盲目跟风杀跌,其实大盘历来暴跌的罪魁祸首很大程度都要归咎于恐慌盘,所以,投资者的心态是关键。
四、扼杀疯牛的终极杀手--中石油:
从宏观角度讲股票不是越涨越好的,而是估值合理的,各类股价符合上市公司的业绩和国民经济发展的部署,那就是最好的了;股票越涨越好那就会形成泡沫的,当泡沫大到一定程度就会破裂的,那是就难以收拾了;美国的金融危机就是房地产的泡沫破裂导致的,这是要整个国民经济的命的事,所以绝对不会是股票越涨越好的情况;
如果各类股票的价格严重透支,到一定程度国家就会干预了,加税加息限制银行贷款,发行超级上市公司打压,当股市形成疯牛后有很多调控办法都失效下,为了遏制这头不驯的狂牛,07年10月政府命中石油“搬兵回朝”救驾,一个中国石油不愧为金牌第一杀手,一入场就把沪市大盘从6120点,一口气赶到1650点,轻而易举地就把狂热的A股给按下去了;
总体来说,从宏观、微观、国内、国际、税收改革和企业制度改革等各方面的因素看,明年中国股市继续向好的基础非常强劲,今年的储蓄增长率首次下跌仅仅是开始,是大规模资金投入股市的开始。储蓄如蓄水,投资如泄洪,从制度上开启储蓄资金自动流入证券市场的变革才刚刚开始。
❾ 如何分析中国股票的基本面
中国股票的基本面一直向好,在本次危机以后的10年达到增长的顶峰,在今后如果能形成以科技为主的产业来提高增长将保持长期的经济活力,股市会从政策为主转为经济为主的导向形成真正的市场经济导向的股市
❿ 中国股票市场现状分析
在2015年我国股票市场经历了牛市后,我国股票市场活跃度一度下降。但在2019-2020年间,股票市场流通情况重新变好,股票成交数量和成交金额都已非常逼近2015年水平。随着2021年经济增长恢复和十四五开年背景,预计2021年我国股票市场活跃度将再次提高。
1、股市流通股本与市值规模
2011-2020年我国股票市场上市公司数量逐年增加,总数量自2011年末的2342家增长到2020年末的4154家。2020年末上海证券交易所共有上市公司总计1800家,较2019年增长了228家,增长幅度为14.50%;深圳证券交易所共有上市公司数量总计2354家,较2019年增长了149家,增长幅度为6.76%;两者2020年上市公司数量总计4154家,较2019年末总计同比增长了9.98%。
流通股本是指公司已发行股本中在外流通没有被公司收回的部分。是指可以在二级市场流通的股份。从股票的流通股本来看,2011-2021年我国股票市场流通总股本呈现平稳上涨趋势,十年中共增加了36114亿股。
截止2021年1月底,我国上海证券交易所中的流通股本为42674亿股,深圳证券交易所中的流通股本共有18994亿股,总计61668亿股。
流通市值指在某特定时间内当时可交易的流通股股数乘以当时股价得出的流通股票总价值。从我国股票市场流通总市值来看,我国流通总市值首先在2015年牛市期间迎来一波高峰,随后进行了一段时间的调整,在2020年后半年再次走高并且已经超过2015年的顶峰。
截止2021年,我国股票市场共有流通总市值64.81万亿元,其中上海证券交易所中有流通市值38.26万亿元,深圳证券交易所中有流通市值26.55万亿元。
2、股市股票交易规模
从我国股票市场的股票成交数量来看,2014-2020年,中国股票市场股票成交数量不断增长,曾在2015年牛市期间达到顶峰值17.10亿股。2020年全年股票成交量共16.74万亿股,同比增长32.2%,但还未达到2015年水平。
从我国股票市场的成交金额来看,2014-2020年间我国股市成交金额呈在经历2015年牛市过后出现了下降,随后在2019年开始回升,2019年重新破万亿成交额。2020年,我国股票市场成交额达到206.82万亿元,同比增长62.3%。
在2019年经济下行压力背景和2020年疫情背景下,我国沪深股市的股票成交金额总体却呈现震荡上升趋势,并且随着当代人理财和投资意识的增长,预计我国的证券市场活跃度将持续提升。
2021年,国内国际双循环的新发展格局正在加速形成,资本市场的作用日益凸显,“十四五”时期将是中国资本市场实现“规范、透明、开放、有活力、有韧性”的目标、中国证券行业实现高质量发展的关键时期。
以上数据来源及分析请参考于前瞻产业研究院《中国证券行业深度调研与投资战略规划分析报告》