当前位置:首页 » 市值市价 » 股票市场上的布朗运动

股票市场上的布朗运动

发布时间: 2021-12-16 19:59:13

Ⅰ 关于期权股票的布朗运动随机性

吓,这么复杂么?随机性怎能用公式死算,猫不会指标,更不会公式,但索罗斯胡嘀咕的人性的贪婪与恐惧是没法估计滴,猫信这话,所以随机性就没法算,大慨是这原因吧。

Ⅱ 布朗运动的金融数学

将布朗运动与股票价格行为联系在一起,进而建立起维纳过程的数学模型是本世纪的一项具有重要意义的金融创新,在现代金融数学中占有重要地位。迄今,普遍的观点仍认为,股票市场是随机波动的,随机波动是股票市场最根本的特性,是股票市场的常态。
布朗运动假设是现代资本市场理论的核心假设。现代资本市场理论认为证券期货价格具有随机性特征。这里的所谓随机性,是指数据的无记忆性,即过去数据不构成对未来数据的预测基础。同时不会出现惊人相似的反复。随机现象的数学定义是:在个别试验中其结果呈现出不确定性;在大量重复试验中其结果又具有统计规律性的现象。描述股价行为模型之一的布朗运动之维纳过程是马尔科夫随机过程的一种特殊形式;而马尔科夫过程是一种特殊类型的随机过程。随机过程是建立在概率空间上的概率模型,被认为是概率论的动力学,即它的研究对象是随时间演变的随机现象。所以随机行为是一种具有统计规律性的行为。股价行为模型通常用著名的维纳过程来表达。假定股票价格遵循一般化的维纳过程是很具诱惑力的,也就是说,它具有不变的期望漂移率和方差率。维纳过程说明只有变量的当前值与未来的预测有关,变量过去的历史和变量从过去到现在的演变方式则与未来的预测不相关。股价的马尔科夫性质与弱型市场有效性(the weak form of market efficiency)相一致,也就是说,一种股票的现价已经包含了所有信息,当然包括了所有过去的价格记录。但是当人们开始采用分形理论研究金融市场时,发现它的运行并不遵循布朗运动,而是服从更为一般的几何布朗运动(geometric browmrian motion)。

Ⅲ 几何布朗运动和分数布朗运动有什么区别

几何布朗运动 (GBM) (也叫做指数布朗运动) 是连续时间情况下的随机过程,其中随机变量的对数遵循布朗运动,[1] also called aWiener process.几何布朗运动在金融数学中有所应用,用来在布莱克-舒尔斯定价模型中模仿股票价格。
分数布朗运动
世界是非线性的,宇宙万物绝大部分不是有序的、线性的、稳定的,而是混沌的、非线性的、非稳定和涨落不定的沸腾世界。有序的、线性的、稳定的只存在于我们自己构造的理论宫殿,而现实宇宙充满了分形。在股票市场的价格波动、心率及脑波的波动、电子元器件中的噪声、自然地貌等大量的自然现象和社会现象中存在着一类近乎全随机的现象,它们具有如下特性:在时域或空域上有自相似性和长时相关性和继承性;在频域上,其功率谱密度在一定频率范围内基本符合1/f的多项式衰减规律。因此被称为1/f族随机过程。Benoit Mandelbrot和Van Ness 提出的分数布朗运动(fractional Brownian motion,FBM)模型是使用最广泛的一种,它具有自相似性、非平稳性两个重要性质,是许多自然现象和社会现象的内在特性。分数布朗运动被赋予不同的名称,如分形布朗运动、有偏的随机游走(Biased Random walk)、分形时间序列(Fractional time serial)、分形维纳过程等。其定义如下:
设0<H<1,Hurst参数为H的分数布朗运动为一连续Gaussian过程,且 ,协方差为 。H=1/2时, 即为标准布朗运动 。
分数布朗运动特征是时间相关函数C(t)≠0,即有持久性或反持久性,或者说有“长程相关性”,不失一般性,可以给出一维情形的布朗运动及分数布朗运动的定义。分数布朗运动既不是马尔科夫过程,又不是半鞅,所以不能用通常的随机来分析。分数布朗运动与布朗运动之间的主要区别为:分数布朗运动中的增量是不独立的,而布朗运动中的增量是独立的;分数布朗运动的深层次上和布朗运动的层次上它们的分维值是不同的,分数布朗运动(分形噪声)的分维值alpha等于1/H,H为Hurst指数,而布朗运动(白噪声)的分维值都是2。
Hurst在一系列的实证研究中发现,自然现象都遵循“有偏随机游走”,即一个趋势加上噪声,并由此提出了重标极差分析法(Rescaled Range Analysis,R/S分析)。设R/S表示重标极差,N表示观察次数,a是固定常数,H表示赫斯特指数,在长达40多年的研究中,通过大量的实证研究,赫斯特建立了以下关系:
R/S=(aN)H
通过对上式取对数,可得:
log(R/S)=H(logN十loga)
只要找出R/S关于N的log/log图的斜率,就可以来估计H的值。 Hurst指数H用来度量序列相关性和趋势强度:当H=0.5时,标准布朗运动,时间序列服从随机漫步;当H≠0.5时,C(t)≠0,且与时间无关,正是分数布朗运动的特征。当0.5<H<1时,序列是趋势增强的,遵循有偏随机游走过程;当0<H<0.5时,序列是反持续性的。可以看出,Hurst指数能够很好地刻画证券市场的波动特征,将R/S分析应用于金融市场,可以判断收益率序列是否具有记忆性,记忆性是持续性的还是反持续性的。所以,分数布朗运动是复杂系统科学体系下的数理金融学的一个合适的工具,作为对描述金融市场价格波动行为模型的维纳过程的一般化、深刻化具有重要的理论与现实意义。

Ⅳ 有关布朗运动和期权定价的问题,望大神解答!

布朗运动是将看起来连成一片的液体,在高倍显微镜下看其实是由许许多多分子组成的。液体分子不停地做无规则的运动,不断地随机撞击悬浮微粒。当悬浮的微粒足够小的时候,由于受到的来自各个方向的液体分子的撞击作用是不平衡的。在某一瞬间,微粒在另一个方向受到的撞击作用超强的时候,致使微粒又向其它方向运动,这样,就引起了微粒的无规则的运动就是布朗运动。
期权定价模型(OPM)----由布莱克与斯科尔斯在20世纪70年代提出。该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关 。模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。

Ⅳ 怎样求解布朗运动的期望和方差

怎样求解布朗运动的期望和方差
布朗运动(Brownian motion)是一种正态分布的独立增量连续随机过程。它是随机分析中基本概念之一。其基本性质为:布朗运动W(t)是期望为0方差为t(时间)的正态随机变量。对于任意的r小于等于s,W(t)-W(s)独立于的W(r),且是期望为0方差为t-s的正态随机变量。可以证明布朗运动是马尔可夫过程、鞅过程和伊藤过程。

Ⅵ 研究衍生品的时候为什么用几何布朗运动来模拟股票价格的运行轨迹

其实很简单,GBM(至少在一定程度上)符合人们对市场的观察。例如,直观的说,股票的价格看起来很像随机游走,再例如,股票价格不会为负,这样起码GBM比普通的布朗运动合适,因为后者是可以为负的。

再稍微复杂一点,对收益率做测试( S(t)/S(t-1) - 1)做测试,发现,哎居然还基本是个正态分布。收益率是正态的,股价就是GBM模型

总之,就是大家做了很多统计测试,发现假设成GBM还能很好的逼近真实数值,比较接近事实。所以就用这个。

其实将精确的数学模型应用到金融的时间非常短。最早是1952年的Markowitz portfolio selection. 那个其实就是一个简单的优化问题。后来的CAPM APT等诸多模型,也仅仅研究的是一系列证券,他们之间回报、收益率以及其他影响因素关系,没有涉及到对股价运动的描述。

第一次提出将股价是GBM应用在严格模型的是black-scholes model 。在这个模型中提出了若干个假设,其中一个就是股价是GBM的。

Ⅶ 几何布朗运动的在金融中的应用

主条目:布莱克-舒尔斯模型
几何布朗运动在布莱克-舒尔斯定价模型被用来定性股票价格,因而也是最常用的描述股票价格的模型 。
使用几何布朗运动来描述股票价格的理由: 几何布朗运动的期望与随机过程的价格(股票价格)是独立的, 这与我们对现实市场的期望是相符的 。 几何布朗运动过程只考虑为正值的价格, 就像真实的股票价格。 几何布朗运动过程与我们在股票市场观察到的价格轨迹呈现了同样的“roughness” 。 几何布朗运动过程计算相对简单。. 然而,几何布朗运动并不完全现实,尤其存在一下缺陷: 在真实股票价格中波动随时间变化 (possiblystochastically), 但是在几何布朗运动中, 波动是不随时间变化的。 在真实股票价格中, 收益通常不服从正态分布 (真实股票收益有更高的峰度('fatter tails'), 代表了有可能形成更大的价格波动).

Ⅷ 布朗运动是什么

布朗运动的特点是布朗粒子的位移分布和粒子数密度分布都满足扩散现象的规律。这说明在粒子浓度不均匀时发生的扩散现象,其本质是粒子的布朗运动产生了位移。在实际的技术应用中,扩散技术相当引人重视。 在半导体集成电路制造过程中,常用扩散方法将特定杂质引入半导体的预定部位,以形成器件或组件,使其具有设计的电路功能。扩散过程是在较高温度下进行的,杂质原子通过晶体中的缺陷(空位或填隙原子)而迁移。所以,作布朗运动的粒子不只有尺度在微米级的颗粒,也可能是原子或分子。布朗粒子的运动特点是具有随机性和偶然性。 在离子晶体中有正、负两种离子,同时存在正、负离子空位,正、负离子就是通过这些空位来扩散的。由于这种运动是随机的和无规则的,各个方向迁移的概率相同,因此,带电粒子的布朗运动不会产生电流。但是如果加上恒定电场,离子运动就会在随机的无规则的迁移之上加一项定向运动,从而能传导电流。 由于作热运动的大量介质分子(原子)对宏观小物体的无规碰撞导致随机运动引起的涨落,这种涨落以布朗运动为代表,所以布朗运动的实质是涨落。 电路中也有涨落现象,譬如电流、电压的涨落,经过线路放大,产生噪声。在导体中电子的热运动是无规则的,有外电场时,在平均电流的背景上,还有一部分涨落电流,它使电信号产生噪声。 在爱因斯坦关于布朗运动的论文发表之前,1900年法国数学家巴施里叶发表了论述股票的论文《投机理论》,认为根据当前的股价并不能确切知道下一时刻的股价,而只知道下一时刻股价的概率分布。他对股票价格的不规则波动构造了一个数学模型,这个模型与1905年爱因斯坦为布朗运动所建立的模型一致。后来,“股票价格比例变化是一种布朗运动”成为金融研究中的一个普遍假设。

Ⅸ 证券价格服从漂移参数0.05,波动参数0.3的几何布朗运动,当前价格为95,利率是4% 假设有种

根据题目,若假设有种新型投资,若购买该投资后六个月内证券价格至少为105,并且购买一年后的价格至少和六个月时价格一样多,那么这种投资一年后的收益为50。
几何布朗运动 (GBM)(也叫做指数布朗运动)是连续时间情况下的随机过程,其中随机变量的对数遵循布朗运动。[1]几何布朗运动在金融数学中有所应用,用来在布莱克-斯科尔斯模型(Black-Scholes 模型)中模拟股票价格。本题中,若若假设有种新型投资,若购买该投资后六个月内证券价格至少为105,并且购买一年后的价格至少和六个月时价格一样多,那么计算为:50乘exp(-0.04)再乘【S(1/2)>105的概率】再乘【S(1)>S(1/2)的概率,则这种投资一年后的收益为50。
拓展资料:
1.常见随机过程介绍
1)几何布朗运动(GBM):这个过程被Black-Scholes(1973)引入到期权定价文献中,虽然这个过程有一些缺陷,并且与实证研究存在着冲突,但是仍然是一种期权和衍生品估值过程的基础过程。
2)CIR模型:平方根扩散过程,这种过程由Cox,Ingersoll和Ross(1985)所提出,用于对均值回复的数量,例如利率或波动率进行建模,除了均值回复的特性以外,这个过程还是保持为正数。
3)跳跃扩散过程(Jump Diffusion):首先由Merton(1976)所给出,为几何布朗运动增加了对数正态分布的条约成分,这允许我们考虑,例如,短期虚值(OTM)的期权通常需要在较大条约的可能性下定价。换句话说,依赖GBM作为金融模型通常不能解释这种OTM的期权的价格,而跳跃扩散过程可能很好的解释。
4)Heston模型:是由Steven Heston(1993)提出的描述标的资产波动率变化的数学模型。Heston模型是一个随机波动模型,这种模型假设资产收益率的波动率并不恒定,也不确定,而是跟随一个随机过程来运动。
5)SABR模型:SABR 模型是由Hagan(2002)提出的一种随机波动率模型,在抛弃了原始的BSM模型中对于波动率为某一常数的假定,假设隐含波动率同样是符合几何布朗运动的,并且将隐含波动率设定为标的价格和合约行权价的函数,结合了隐含波动率修正模型的两种思路(随机波动率模型和局部波动率模型),更为准确的动态刻画出吻合市场特征的隐含波动率曲线。

Ⅹ 为什么用几何布朗运动描述股票价格

几何布朗运动就是物理中典型的随机运动,其特点就是不可预测,而在股市中的短期股票价格也是不可预测。

热点内容
股市一类犯罪怎么判 发布:2025-01-07 08:01:19 浏览:862
如何应对金融网络犯罪 发布:2025-01-07 07:33:27 浏览:610
怎么查基金持有最多的股票 发布:2025-01-07 07:16:48 浏览:88
股票的历史价格查看 发布:2025-01-07 07:03:55 浏览:277
大盘暴跌股票涨停 发布:2025-01-07 06:49:09 浏览:408
哪个手机股票软件能看到当日盈亏 发布:2025-01-07 06:48:26 浏览:985
st金路股票季度历史交易 发布:2025-01-07 06:28:21 浏览:517
金融专业考什么证好就业 发布:2025-01-07 06:17:20 浏览:427
历史上收购公司的股票 发布:2025-01-07 06:17:17 浏览:773
涨停复盘表的股票怎么导出来 发布:2025-01-07 06:09:53 浏览:322