博弈论在股票市场的应用
A. 博弈论的应用领域
经济学中最常用,已经成为经济学的标准分析工具之一;另外,博弈论也用于政治、法律、军事等社会科学,博弈论也常用于生态学、生理学等自然科学之中。在生活中,博弈论可以解释很多的社会现象。
B. 针对中国股市的特点,运用博弈论的有关知识分析散户如何与机构博弈
兄弟,你好,以前在大智慧公司做过,懂一些知识。
散户目前亏损率达到百分之90左右,所以这个思想要好好记住。
如何博弈呢,就是跟着大户走。目前我实践的不多,只是进行了模拟炒股,原因是我资金不足,玩不起。如何跟大户走呢,就是要跟着机构,只要你跟的上,并且提取出货,那么是可以赚钱的。看行情,一般大盘是波浪形的,你看大约在谷底就跟进吧。不要慌,设置好止损位,同时心也不要太黑,随时关注全球的一个经济危机方面的新闻,因为我觉得中国的媒体和中国的证券公司等等都会有相关的联系,所以媒体就成为这些投资公司的工具。这个是我自己感觉的,你自己看吧。就讲这么多吧,祝你好运。
C. 什么是股市博弈论
本书彻底扬弃了传统技术分析的理论体系,而在博弈论的基础上重构了技术分析的理论。博弈论把股市看成一个竞局,投资人处于博弈对抗中,投资决策是一个博弈计算过程。博弈计算与人们习惯的按照科学规律思考问题不同,它面对的系统不是僵死按一种规律变化,而是有多种变化发展的可能的活的系统。所以博弈计算必须要有对手意识,考虑对手的存在,考虑到对手存在多种可能的选择,同时还要考虑到对手在计算时也会考虑到我的存在和我的多种选择的可能等等。博弈计算更符合股市决策的实际情况,所以,本书对股市规律的论述较传统的技术分析理论更清晰,且对操作更有指导意义。
D. 博弈论的应用有哪些方面
博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域
1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。然而,纳什天才的发现却遭到冯·诺依曼的断然否定,在此之前他还受到爱因斯坦的冷遇。但是骨子里挑战权威、藐视权威的本性,使纳什坚持了自己的观点,终成一代大师。要不是30多年的严重精神病折磨,恐怕他早已
站在诺贝尔奖的领奖台上了,而且也绝不会与其他人分享这一殊荣。
纳什是一个非常天才的数学家,他的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。然而,他的天才发现———非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。
1948年纳什到普林斯顿大学读数学系的博士。那一年他还不到20岁。当时普林斯顿可谓人杰地灵,大师如云。爱因斯坦、冯·诺依曼、列夫谢茨(数学系主任)、阿尔伯特·塔克、阿伦佐·切奇、哈罗德·库恩、诺尔曼·斯蒂恩罗德、埃尔夫·福克斯……等全都在这里。博弈论主要是由冯·诺依曼(1903—1957)创所立的。他是一位出生于匈牙利的天才的数学家。他不仅创立了经济博弈论,而且发明了计算机。早在20世纪初,塞梅鲁(Zermelo)、鲍罗(Borel)和冯·诺伊曼已经开始研究博弈的准确的数学表达,直到1939年,冯·诺依曼遇到经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern),并与其合作才使博弈论进入经济学的广阔领域。
1944年他与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。尽管对具有博弈性质的问题的研究可以追溯到19世纪甚至更早。例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。合作型博弈在20世纪50年代达到了巅峰期。然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。正是在这个时候,非合作博弈———“纳什均衡”应运而生了,它标志着博弈论的新时代的开始!纳什不是一个按部就班的学生,他经常旷课。据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。于是,又走人了。然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一年的10月,他骤感才思潮涌,梦笔生花。其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。纳什的主要学术贡献体现在1950年和1951年的两篇论文之中(包括一篇博士论文)。1950年他才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950年11月刊登在美国全国科学院每月公报上,立即引起轰动。说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低几天之后,他遇到盖尔,告诉他自己已经将冯·诺依曼的“最小最大原理”(minimax solution)推到非合作博弈领域,找到了普遍化的方法和均衡点。盖尔听得很认真,他终于意识到纳什的思路比冯·诺伊曼的合作博弈的理论更能反映现实的情况,而对其严密优美的数学证明极为赞叹。盖尔建议他马上整理出来发表,以免被别人捷足先登。纳什这个初出茅庐的小子,根本不知道竞争的险恶,从未想过要这么做。结果还是盖尔充当了他的“经纪人”,代为起草致科学院的短信,系主任列夫谢茨则亲自将文稿递交给科学院。纳什写的文章不多,就那么几篇,但已经足够了,因为都是精品中的精品。这一点也是值得我们深思的。国内提一个教授,要求在“核心的刊物”上发表多少篇文章。按照这个标准可能纳什还不一定够资格。
1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发表过什么文章,特殊的人才,必须有特殊的选拔办法。
纳什在上大学时就开始从事纯数学的博弈论研究,1948年进入普林斯顿大学后更是如鱼得水。20岁出头已成为闻名世界的数学家。特别是在经济博弈论领域,他做出了划时代的贡献,是继冯·诺依曼之后最伟大的博弈论大师之一。他提出的著名的纳什均衡的概念在非合作博弈理论中起着核心的作用。后续的研究者对博弈论的贡献,都是建立在这一概念之上的。由于纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。
E. 博弈论在分析市场竞争中有什么作用
博弈论是从利益主体的行为特征人手,由于理论本身的严谨性和精确性,并且同现代科学技术的发展有着密切的关系,因而当企业面临着创新与竞争的抉择的时候,企业所需要的是作出及时的、适当的、明智的决策,而博弈论就为企业经营者的竞争性决策行为指出方向,并提供科学的经营管理新方法。另外,对于企业家而言,博弈论不仅为深入确切地研究企业的竞争管理提供方法和工具,更重要的是它那深邃的思想、认识观念和分析角度的客观性,将为企业家的决策思维增加新的内容和启发。
一、博弈论
一、博弈论简介
博弈论,英文为game theory ,是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题的,也就是说,当一个主体,好比说一个人或一个企业的选择受到其他人、其他企业选择的影响,而且反过来影响到其他人、其他企业选择时的决策问题和均衡问题。
二、博弈论的基本概念
博弈论在研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题的时候,必须考虑一个主体,好比说一个人或一个企业的选择会受到其他人、其他企业选择的影响,而且反过来影响到其他人、其他企业选择时的决策以及这样的决策所出现的结果。
博弈论可以划分为合作博弈和非合作博弈。合作博弈与非合作博弈之间的区别主要在于人们的行为相互作用时,当事人能否达成一个具有约束力的协议,如果有,就是合作博弈;反之,则是非合作博弈。博弈论的基本概念包括:参与人、行动、信息、策略、支付函数、结果、均衡。
"参与人",是指博弈中选择行动以最大化自己效用的决策主体(可能是个人,也可能是团体,如国家、企业)。
"行动",是参与人在博弈的某个时点的决策变量。
"策略",是参与人选择行动的规则,它告诉参与人在什么时候选择什么行动。
"信息",是指参与人在博弈中的知识,特别是有关其他参与人(对手)的特征和行动的知识。
"支付函数",是参与人从博弈中获得的效用水平,它是所有参与人策略或行动的函数,是每个参与人真正关心的东西。
"结果",是指博弈分析者感兴趣的要素的集合。"均衡",是所有参与人的最优策略或行动的组合。上述概念中,参与人、行动、结果统称为博弈规则,博弈分析的目的是使用博弈规则决定均衡。以下用房地产开发商的例子说明。
设想有一家房地产开发商A正在考虑是否要在某地开发一栋新的写字楼。他面临的选择是开发或者不开发。如果决定开发,必须总共投入4亿元人民币。如果决定不开发,则由于前期费用,将损失0.5亿元。在作这个决定时,他关心的当然是开发是否有利可图。
像房地产这样的市场充满着风险。风险首先来自于市场需求的不确定性。需求可能大,也可能小。风险的另一方面是竞争对手--房地产开发商B。假设也面临与同样的决策问题。是否投入4亿元资金开发一栋同样的写字楼。
假定如果某地段上有两栋楼出售,需求大时,每栋售价可达6亿元,需求小时售价为3亿元;如果市场上只有一栋楼出售,需求大时售价为7亿元,需求小时为5亿元。这样,有以下可能的结果:
1.需求大,A开发,B不开发;A的利润为3亿元,B的利润为—0.5亿元。
2.需求大,A不开发,B开发;A的利润为一0.5亿元,B的利润为0。
3.需求大,AB同时开发,AB的利润各为2亿元。
4.需求大,AB都不开发,A的利润为一0.5亿元,B的利润为0。
5.需求小,A开发,B不开发,A的利润为1亿元,B的利润为0。
6.需求小,A不开发,B开发,A的利润为一0.5亿元,B的利润为1亿元。
7.需求小,AB同时开发,AB的利润各为一1亿元。
8.需求小,AB都不开发,A的利润为一0.5亿元,B的利润为0。
在这个例子中,无论A还是B,在决定是否开发时,不仅要考虑市场需求的大小,而且还要考虑对方的行动。若双方同时做出决策,每一方在作出自己的决定时并不知道对方的决定,再假定市场信息双方都已知,如果市场需求大,双方都会开发,各得利润2亿元;如果市场需求小,一方是否开发依赖于他认为对方是否开发:如果认为对方会开发,最好是不开发;反之亦然。另一方面,如果市场需求是不确定的,是否开发依赖于各自在多大的程度上认为市场需求大及对方是否开发。比如说,如果双方都认为市场需求大的概率为50%,那么,不论对方是否开发,每一方的最优决策是开发,因为在最坏的情况下,可带来1亿元的期望利润,而不开发,对于来说会有0.5亿元的损失。
二、博弈论在市场竞争中的运用
一、市场竞争
市场竞争是市场经济中同类经济行为主体为着自身利益的考虑,以增强自己的经济实力,排斥同类经济行为主体的相同行为的表现。市场竞争的内在动因在于各个经济行为主体自身的物质利益驱动,以及为丧失自己的物质利益被市场中同类经济行为主体所排挤的担心。
市场竞争的方式可以有多种多样,比如,有产品质量竞争、广告营销竞争、价格竞争、产品式样和花色品种竞争等,这也就是通常所说的市场竞争策略。通常我们按市场竞争的程度把市场竞争划分为如下两种类型: (1)完全竞争。 指一种没有任何外在力量阻止和干扰的市场情况。 (2)不完全竞争。 一般是指除完全竞争以外、有外在力量控制的市场情况。
不完全竞争包括以下3种类型: ①完全垄断。 ②垄断竞争。 ③寡头垄断。
二、纳什均衡与重复博弈
在一个纳什均衡,任何一个参与者都不会改变自己的最优策略,如果其他参与者均不改变各自的最优策略。纳什均衡可以普遍的应用于分析市场行为。
假设在一汽车市场上有两个竞争对手为A和B。AB都想利用促销的方式来取得市场优势,以便获得更大的利润。当A的经理们正在谋划如何促销才能提高市场占有率时,他们既知道B的经理也在想同样的事,有知道B的经理们知道A的经理们正在想什么。反之亦然。由此我们可以用标准型来表示AB双方在促销博弈中的策略组合,而AB促销手段为降价与不讲价。
B
降价 不降价
(1,1) (3,0)
(0,3) (2,2)
A 降价
不降价
从上述矩阵可以看到,如果AB都不采取降价促销的策略,那么两家支付分别为2,而如果AB都采取降价促销的方式,那么两家的支付分别为1。显然双方都不降价对双方有利。
但是实际上并非如此。A可能会推断:加入B 不降价,我也不降价,那么我与B各维持各自的市场份额,支付为2。但如果我降价,则可以提高我的市场占有率,可以把支付增至3。另外,加入B降价,我不降价,我的市场占有率将下降,支付变为0。而如果我也降价,至少可能维持原来的市场占有率,虽然这样双方的支付会变为1。因此,不管对手怎做,降价促销对A总是有利的。同理,B也会得出相同的结论。因此“降价——降价”的战略组合为优势战略。
不过尽管纳什均衡在市场行为的博弈分析中占有重要地位,它仍有许多在理论上不能自足的地方。在纳什均衡中,企业方在选择自己的策略是,把竞争方的策略当做是给定的,不考虑自己的选择如何影响对手的选择。这个假定只是在研究动态博弈论时成立,在动态博弈论中则不太适用。
动态博弈是一种反复进行的博弈,重复博弈是动态博弈的一种特殊情况。在重复博弈中,一个结构相同的博弈被重复多次。在上例的情况下,假如同样的博弈可以无限重复的进行下去,那么企业方的行为也会发生变化,可以在(2,2)上形成纳什均衡点。也就是说,A意图与B一起组成“不降价——不降价”的战略合作关系,A可向B表示自己的战略。如果B也采取“不降价”战略,A将一直选择“不降价”战略;如果B半途变卦而“降价”,A则从下一阶段起一直采取“降价”战略。在此,B可以看到,若与A合作,每阶段所获支付为2。若不与A合作,可能暂时(或一次)获得了支付,但以后的支付一直为1,这显然是下策。因此B倾向是合作的。(2,2)点在无限重复的博弈中就可以成为纳什均衡点。可见,通过重复多次的博弈能够吸引竞争企业之间趋向合作。
F. 《博弈论》的应用领域
太有用了,博弈论研究主体之间相互行为,主要用于经济学、管理学,也有用于信息科学、人工智能、数值计算等很多领域。
G. 博弈论在股市中有哪些著名的成功应用实例
博弈论最根本的假设就是所有人都是理性人,而且时时刻刻是理性。所有的假设都是在这基础上展开的,有很多在现实中不适用!
博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。
博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。
博弈论已经成为经济学的标准分析工具之一。在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
基本概念中包括局中人、行动、信息、策略、收益、均衡和结果等。其中局中人、策略和收益是最基本要素。局中人、行动和结果被统称为博弈规则。
H. 博弈论在市场营销中的应用
我不了解市场营销,但是要是用博弈论来谈竞争问题,可以考虑一下囚徒困境——互不合作而带来最差的结果。博弈论中还有很多小模型可以得到不同的结果,不知道你想要什么样的,是竞争带来双赢,还是什么。可以看看博弈论语信息经济学那本书或者是博弈论与经济模型(kreps的,简单明了易读)。