股票财务量化投资逻辑
1. 股票的投资逻辑
1.要低买高卖,就要有判断基准。基准就是股票的价值。股票的真实价值就是公司的价值。因此要对公司价值进行分析!只有这样才能实现低买。
2.价格波动短期是无序的。很难对价格短期向上或何下进行判断。因为影响价格的因子太多了。而长期来说价格会向价值回归。因此投资股票要做长期持有的准备。只有足够长的时间才能等到价格高于价值的卖点。长期持有才能高卖。
3.因为要长期持有,因此用闲钱投资才是正道。急用的钱或借来的钱去投资往往会亏损!因为你等不到能高卖的时候!
拓展资料:
费用介绍
一、印花税:印花税是根据国家税法规定,在股票(包括A股和B股)成交后对买卖双方投资者按照规定的税率分别征收的税金。印花税的缴纳是由证券经营机构在同投资者交割中代为扣收,然后在证券经营机构同证券交易所或登记结算机构的清算交割中集中结算,最后由登记结算机构统一向征税机关缴纳。其收费标准是按A股成交金额的1‰计收,基金、债券等均无此项费用。
二、其他费用:其他费用是指投资者在委托买卖证券时,向证券营业部缴纳的委托费(通讯费)、撤单费、查询费、开户费、磁卡费以及电话委托、自助委托的刷卡费、超时费等。这些费用主要用于通讯、设备、单证制作等方面的开支,其中委托费在一般情况下,投资者在上海、深圳本地买卖沪、深证券交易所的证券时,向证券营业部缴纳1元委托费,异地缴纳5元委托费;其他费用由券商根据需要酌情收取,一般没有明确的收费标准,只要其收费得到当地物价部门批准即可,目前有相当多的证券经营机构出于竞争的考虑而减免部分或全部此类费用。
2. 国内散户如何玩量化投资具体是什么步骤呢
量化交易是指投资者将交易策略的逻辑与参数经过电脑程序运算后,将交易策略系统化,然后通过电脑自动下单来完成交易。
在量化交易过程中,散户可以这样做:
1、根据个股的历史数据,进行多因子选股,比如,把市盈率、市净率、市销率等作为选股标准,选出一些价值被低估,或者处于合理区域的个股。
2、顺势交易,即在上涨的趋势中买入,在下跌的趋势中卖出。
3、进行合理的仓位管理,即采取漏斗型仓位管理法、矩形仓位管理法、金字塔形仓位管理法等,好应对个股后期的风险。
4、再根据个股的历史走势,寻找个股的支撑位和压力位,把它们作为止损、止盈点,即在压力位置,且获得收益的时候及时卖出;在跌破支撑位时,且股票亏损的时候及时卖出股票,避免更大的损失。
量化投资的最终目标
是让投资者做到知行合一,克制人性的贪念,让自己成为理性的投资者。优柔寡断,是投资者面临损失最常见的问题。量化投资的模型,将所有的数据模型化,不再给出多个方案选择,只给自己定下唯一的参考标准。
量化投资的问题在于,当模型被市场打破后,在没有找出根本的原因,是否能够做到静观其变。即使错过了机遇,也不为此而叹息,以原则坚守为主。简单的理解,将炒股的各种参数量化,像机器人一样简单,消除各种幻觉。不以亏损而恐慌,不以赚钱而自大,盈亏有道。
如果想在股市中长期生存,请给自己设置一个模型!
3. 如何通过量化投资模型提高股票交易的效率与准确性
量化投资模型是一种基于数据分析和统计学方法的投资策略,它可以帮助投资者在股票交易中提高效率和准确性。以下是一些建议:
1. 收集数据:量化投资模型需要大量的数据,包括股票价格、财务数据、市场数据等。可以通过股票交易平台、金融数据提供商等途径获得。
2. 设计模型:根据收集的数据,设计一个适合自己的量化投资模型。可以使用回归分析、时间序列分析、机器学习等方法来构建模型。
3. 测试模型:在实际交易前,需要对模型进行测试。可以橡正使用历史数据来测试模型逗扮的准确性和效率。
4. 优化模型:根据测试结果,对模型进行优化,例如调整参数、增加或减少变量等。
5. 实施交易:在模型测试和优化后,可以开始实施交易。建议在实际交易中持续监测模型的表现,及时进行调整和优化。
6. 风险控制:量化投资模型虽然可以提高交易效率和准确性,但仍然存在风险。因此,需要设置风险控制机制,例如止损、分散投山如灶资等。
4. 假如你将投资一只股票,请阐明分析步骤和投资逻辑
首先投资的是一家家企业股票,只不过是你拥有企业的股份的一个证明,类似小票一样它并不是主要。所以我要投资,我更多的是说投资企业,而不是投资股票。就像买债券一样,你。你是把你的钱借给了企业,企业到时候还你钱。这才是本质,所以投资一家企业的话,那肯定要了解这个公司,你不了解怎么能投呢?就像你买一家公司,你买什么东西你不了解,你就能下结论吗?所以你一定要了解的,然后这个公司要能够长期稳定的盈利才可以。投资更多的时候不是投资一个公司,而是几个公司,或者是一批公司一个行业。这样风险大大降低了,因为行业内的公司自然是互补效应,这个公司坏那个公司就必然会好,所以它有互补,这样我们就会获得平均收益,风险就很低了,所以我更多的是买一个行业里的所有的好公司或者直接买入行业基金。
5. 量化投资
没有你想的书
我多年来都有关注这方面的书 可是也没有在国内找到
数量化投资是将投资理念及策略通过具体指标、参数的设计,体现到具体的模型中,让模型对市场进行不带任何情绪的跟踪;相对于传统投资方式来说,具有快速高效、客观理性、收益与风险平衡和个股与组合平衡等四大特点。量化投资技术几乎覆盖了投资的全过程,包括估值与选股、资产配置与组合优化、订单生成与交易执行、绩效评估和风险管理等,在各个环节都有不同的方法及量化模型:
一、估值与选股
估值:对上市公司进行估值是公司基本面分析的重要方法,在“价值投资”的基本逻辑下,可以通过对公司的估值判断二级市场股票价格的扭曲程度,继而找出价值被低估或高估的股票,作为投资决策的参考。对上市公司的估值包括相对估值法和绝对估值法,相对估值法主要采用乘数方法,如PE估值法、PB估值法、PS估值法、PEG估值法、PSG估值法、EV/EBITDA估值法等;绝对估值法主要采用折现的方法,如公司自由现金流模型、股权自由现金流模型和股利折现模型等。相对估值法因简单易懂,便于计算而被广泛使用;绝对估值法因基础数据缺乏及不符合模型要求的全流通假设而一直处于非主流地位。随着全流通时代的到来和国内证券市场的快速发展,绝对估值法正逐渐受到重视。
选股:在当前品种繁多的资本市场中,从浩瀚复杂的数据背后选出适合自己投资风格的股票变得越加困难。在基本面研究的基础上结合量化分析的手段就可以构建数量化选股策略,主流的选股方法如下:
资产配置方法与模型
资产配置类别 资产配置层次 资产配置方法 资产配置模型
战略资产配置 全球资产配置 大类资产配置 行业风格配置 收益测度 风险测度 估计方法 马克维茨 MV 模型 均值 -LPM 模型 VaR 约束模型 Black-Litterman 模型
战术资产配置 ( 动态资产配置 ) 周期判断 风格判断 时机判断 行业轮动策略 风格轮动策略 Alpha 策略 投资组合保险策略
基本面选股:通过对上市公司财务指标的分析,找出影响股价的重要因子,如:与收益指标相关的盈利能力、与现金流指标相关的获现能力、与负债率指标相关的偿债能力、与净资产指标相关的成长能力、与周转率指标相关的资产管理能力等。然后通过建立股价与因子之间的关系模型得出对股票收益的预测。股价与因子的关系模型分为结构模型和统计模型两类:结构模型给出股票的收益和因子之间的直观表达,实用性较强,包括价值型(本杰明·格雷厄姆—防御价值型、查尔斯·布兰迪—价值型等)、成长型(德伍·切斯—大型成长动能、葛廉·毕克斯达夫—中大型成长股等)、价值成长型(沃伦·巴菲特—优质企业选择法、彼得·林奇—GARP价值成长法等)三种选股方法;统计模型是用统计方法提取出近似线性无关的因子建立模型,这种建模方法因不需先验知识且可以检验模型的有效性,被众多经济学家推崇,包括主成分法、极大似然法等。
多因素选股:通过寻找引起股价共同变动的因素,建立收益与联动因素间线性相关关系的多因素模型。影响股价的共同因素包括宏观因子、市场因子和统计因子(通过统计方法得到)三大类,通过逐步回归和分层回归的方法对三类因素进行选取,然后通过主成分分析选出解释度较高的某几个指标来反映原有的大部分信息。多因素模型对因子的选择有很高的要求,因子的选择可依赖统计方法、投资经验或二者的结合,所选的因子要有统计意义上或市场意义上的显著性,一般可从动量、波动性、成长性、规模、价值、活跃性及收益性等方面选择指标来解释股票的收益率。
动量、反向选股:动量选股策略是指分析股票在过去相对短期的表现,事先对股票收益和交易量设定条件,当条件满足时买进或卖出股票的投资策略,该投资策略基于投资者对股票中期的反应不足和保守心理,在投资行为上表现为购买过去几个月表现好的股票而卖出过去几个月表现差的股票。反向选股策略则基于投资者的锚定和过度自信的心理特征,认为投资者会对上市公司的业绩状况做出持续过度反应,形成对业绩差的公司业绩过分低估和业绩的好公司业绩过分高估的现象,这为投资者利用反向投资策略提供了套利机会,在投资行为上表现为买进过去表现差的股票而卖出过去表现好的股票。反向选股策略是行为金融学理论发展至今最为成熟,也是最受关注的策略之一。
二、资产配置
资产配置指资产类别选择、投资组合中各类资产的配置比例以及对这些混合资产进行实时管理。资产配置一般包括两大类别、三大层次,两大类别为战略资产配置和战术/动态资产配置,三大层次为全球资产配置、大类资产配置和行业风格配置。资产配置的主要方法及模型如下:
战略资产配置针对当前市场条件,在较长的时间周期内控制投资风险,使得长期风险调整后收益最大化。战术资产配置通常在相对较短的时间周期内,针对某种具体的市场状态制定最优配置策略,利用市场短期波动机会获取超额收益。因此,战术资产配置是在长期战略配置的过程中针对市场变化制定的短期配置策略,二者相互补充。战略资产配置为未来较长时间内的投资活动建立业务基准,战术资产配置通过主动把握投资机会适当偏离战略资产配置基准,获取超额收益。
三、股价预测
股价的可预测性与有效市场假说密切相关。如果有效市场假说成立,股价就反映了所有相关的信息,价格变化服从随机游走,股价的预测就毫无意义,而我国的股市远未达到有效市场阶段,因此股价时间序列不是序列无关,而是序列相关的,即历史数据对股价的形成起作用,因此可以通过对历史信息的分析来预测股价。
主流的股价预测模型有灰色预测模型、神经网络预测模型和支持向量机预测模型(SVM)。灰色预测模型对股价的短期变化有很强的预测能力,近年发展起来的灰色预测模型包括GM(1, 1)模型、灰色新陈代谢模型和灰色马尔可夫模型。人工神经网络模型具有巨量并行性、存储分布性、结构可变性、高度非线性和自组织性等特点,且可以逼近任何连续函数,目前在金融分析和预测方面已有广泛的应用,效果较好。支持向量机模型在解决小样本、非线性及高维模式识别问题中有许多优势,且结构简单,具有全局优化性和较好的泛化能力,比神经网络有更好的拟合度。
四、绩效评估
作为集合投资、风险分散、专业化管理、变现性强等特点的投资产品,基金的业绩虽然受到投资者的关注,但要对基金有一个全面的评价,则需要考量基金业绩变动背后的形成原因、基金回报的来源等因素,绩效评估能够在这方面提供较好的视角与方法,风险调整收益、择时/股能力、业绩归因分析、业绩持续性及Fama的业绩分解等指标和方法可从不同的角度对基金的绩效进行评估。
绩效评估模型 / 指标
绩效评估准则
择时 / 股能力
业绩归因分析
风险调整收益
业绩持续性
Fama 业绩分解
模型 / 指标
T-M 模型
H-M 模型
GII 模型
C-L 模型
资产配置收益
证券选择收益
行业选择收益
行业内个股选择收益
RAROC
Sharp, Stutzer
Treynor, Jensen
, ,
双向表分析
时间序列相关性
总风险收益
系统风险收益
分散化投资收益
五、基于行为金融学的投资策略
上世纪50~70年代,随着马科维茨组合理论、CAPM模型、MM定理及有效市场假说的提出,现代金融经济学建立了一套成熟的理论体系,并且在学术界占据了主导地位,也被国际投资机构广泛应用和推广,但以上传统经济学的理论基石是理性人假设,在理性人假设下,市场是有效率的,但进入80年代以后,关于股票市场的一系列研究和实证发现了与理性人假设不符合的异常现象,如:日历效应、股权溢价之谜、期权微笑、封闭式基金折溢价之谜、小盘股效应等。面对这些金融市场的异常现象,诸多研究学者从传统金融理论的基本假设入手,放松关于投资者是完全理性的严格假设,吸收心理学的研究成果,研究股市投资者行为、价格形成机制与价格表现特征,取得了一系列有影响的研究成果,形成了具有重要影响力的学术流派-行为金融学。
行为金融学是对传统金融学理论的革命,也是对传统投资实践的挑战。随着行为金融理论的发展,理论界和投资界对行为金融理论和相关投资策略作了广泛的宣传和应用,好买认为,无论机构投资者还是个人投资者,了解行为金融学的指导意义在于:可以采取针对非理性市场行为的投资策略来实现投资目标。在大多数投资者认识到自己的错误以前,投资那些定价错误的股票,并在股价正确定位之后获利。目前国际金融市场中比较常见且相对成熟的行为金融投资策略包括动量投资策略、反向投资策略、小盘股策略和时间分散化策略等。
六、程序化交易与算法交易策略
根据NYSE的定义,程序化交易指任何含有15只股票以上或单值为一百万美元以上的交易。程序化交易强调订单是如何生成的,即通过某种策略生成交易指令,以便实现某个特定的投资目标。程序化交易主要是大机构的工具,它们同时买进或卖出整个股票组合,而买进和卖出程序可以用来实现不同的目标,目前程序化交易策略主要包括数量化程序交易策略、动态对冲策略、指数套利策略、配对交易策略和久期平均策略等。
算法交易,也称自动交易、黑盒交易或无人值守交易,是使用计算机来确定订单最佳的执行路径、执行时间、执行价格及执行数量的交易方法,主要针对经纪商。算法交易广泛应用于对冲基金、企业年金、共同基金以及其他一些大型的机构投资者,他们使用算法交易对大额订单进行分拆,寻找最佳路由和最有利的执行价格,以降低市场的冲击成本、提高执行效率和订单执行的隐蔽性。任何投资策略都可以使用算法交易进行订单的执行,包括做市、场内价差交易、套利及趋势跟随交易。算法交易在交易中的作用主要体现在智能路由、降低冲击成本、提高执行效率、减少人力成本和增加投资组合收益等方面。主要的算法包括:交易量加权平均价格算法(VWAP)、保证成交量加权平均价格算法(Guaranteed VWAP)、时间加权平均价格算法(TWAP)、游击战算法(Guerrilla)、狙击手算法(Sniper)、模式识别算法(Pattern Recognition)等。
综上所述,数量化投资技术贯穿基金的整个投资流程,从估值选股、资产配置到程序化交易与绩效评估等。结合量化投资的特点及我国证券市场的现状,好买认为量化投资技术在国内基金业中的应用将主要集中在量化选股、资产配置、绩效评估与风险管理、行为金融等方面,而随着包括基金在内的机构投资者占比的不断提高、衍生品工具的日渐丰富(股指期货、融资融券等)以及量化投资技术的进步,基金管理人的投资策略将会越来越复杂,程序化交易(系统)也将有快速的发展。
6. 量化投资需要经济学逻辑吗
量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。从全球市场的参与主体来看,按照管理资产的基蔽规模,全球排名前四以及前六位中的五家资管机构,都是依靠计算机技术来开展投资决策,由量化及程序化交易所管理的资金规模在不断扩大。
事实上,互联网的发展,使得新概念在世界范迹此围的传播速度非常快,作为一个概念,量化投资并不算新,国内投资者早有耳姿锋迅闻。但是,真正的量化基金在国内还比较罕见。同时,机器学习的发展也对量化投资起了促进作用。
所有的决策都是依据模型做出的。我们有三个模型:一是大类资产配置模型、二是行业模型、三是股票模型。根据大类资产配置决定股票和债券投资比例;按照行业配置模型确定超配或低配的行业;依靠股票模型挑选股票。纪律性首先表现在依靠模型和相信模型,每一天决策之前,首先要运行模型,根据模型的运行结果进行决策,而不是凭感觉。
有人问,模型出错怎么办?不可否认,模型可能出错,就像CT机可能误诊病人一样。但是,在大概率下,CT机是不会出错的,所以,医生没有抛弃CT机,我的模型在大概率下是不出错的,所以,我还是相信我的模型。
纪律性的好处很多,可以克服人性的弱点,如贪婪、恐惧、侥幸心理,也可以克服认知偏差,行为金融理论在这方面有许多论述。纪律化的另外一个好处是可跟踪。定量投资作为一种定性思想的理性应用,客观地在组合中去体现这样的组合思想。一个好的投资方法应该是一个“透明的盒子”。
7. 什么是量化投资怎么理解量化
私募排排网为您解答:
量化投资,简单说就是利用计算机技术和数学模型去实现投资策略的过程。根据上面的定义,理解它的话,咱们只要记住3个关键词:
数学模型:需要数学公式或模型进行计算;
计算机技术:用计算机来进行自动化交易;
投资策略:将这种方法形成一种惯用投资策略。
8. 量化投资,如何量化呢
量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
1·量化选股
量化选股就是采用数量的方法判断某个公司是否值得买入的行为。根据某个方法,如果该公司满足了该方法的条件,则放入股票池,如果不满足,则从股票池中剔除。量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类
2·量化择时
股市的可预测性问题与有效市场假说密切相关。如果有效市场理论或有效市场假说成立,股票价格充分反映了所有相关的信息,价格变化服从随机游走,股票价格的预测则毫无意义。众多的研究发现我国股市的指数收益中,存在经典线性相关之外的非线性相关,从而拒绝了随机游走的假设,指出股价的波动不是完全随机的,它貌似随机、杂乱,但在其复杂表面的背后,却隐藏着确定性的机制,因此存在可预测成分。
3·股指期货
股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限,不同(但相近)类别股票指数合约交易,以赚取差价的行为,股指期货套利主要分为期现套利和跨期套利两种。股指期货套利的研究主要包括现货构建、套利定价、保证金管理、冲击成本、成分股调整等内容。
4·商品期货
商品期货套利盈利的逻辑原理是基于以下几个方面 :
(1)相关商品在不同地点、不同时间对应都有一个合理的价格差价。
(2)由于价格的波动性,价格差价经常出现不合理。
(3)不合理必然要回到合理。
(4)不合理回到合理的这部分价格区间就是盈利区间。
5·统计套利
有别于无风险套利,统计套利是利用证券价格的历史统计规律进行套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。统计套利在方法上可以分为两类,一类是利用股票的收益率序列建模,目标是在组合的β值等于零的前提下实现alpha 收益,我们称之为β中性策略;另一类是利用股票的价格序列的协整关系建模,我们称之为协整策略。
6·期权套利
期权套利交易是指同时买进卖出同一相关期货但不同敲定价格或不同到期月份的看涨或看跌期权合约,希望在日后对冲交易部位或履约时获利的交易。期权套利的交易策略和方式多种多样,是多种相关期权交易的组合,具体包括:水平套利、垂直套利、转换套利、反向转换套利、跨式套利、蝶式套利、飞鹰式套利等。
7·算法交易
算法交易又被称为自动交易、黑盒交易或者机器交易,它指的是通过使用计算机程序来发出交易指令。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格、甚至可以包括最后需要成交的证券数量。根据各个算法交易中算法的主动程度不同,可以把不同算法交易分为被动型算法交易、主动型算法交易、综合型算法交易三大类。
8·资产配置
资产配置是指资产类别选择,投资组合中各类资产的适当配置以及对这些混合资产进行实时管理。量化投资管理将传统投资组合理论与量化分析技术的结合,极大地丰富了资产配置的内涵,形成了现代资产配置理论的基本框架。
它突破了传统积极型投资和指数型投资的局限,将投资方法建立在对各种资产类股票公开数据的统计分析上,通过比较不同资产类的统计特征,建立数学模型,进而确定组合资产的配置目标和分配比例。
9. 股票的投资逻辑是怎样的
股票说简单就是买和卖,形象点打个比方这好比在一个菜市场买青菜猪肉,一群人每天都需要买入和卖出,而讨价还价就是股票的交易价格。炒股说简单点就是2个步骤:买和卖,但要做好这2个步骤,没有一个所谓的大师或者专家敢说自己是包赢的,除非是内幕黑交易,但散户怎么可能获得,所以就需要经验累积和足够的耐心。股票建议不要急于入市,可以去游侠股市做下模拟炒股,先了解下基本东西,对入门学习、锻炼实战技巧很有帮助。
步骤1:选股,没有绝对的好股,现在股票市场完全超出了自身价值的N倍,按理全属于垃圾废纸,投机代替了投资,所以没必要去看什么题材未来,只需要看你的股票是否套住了足够多的人,然后你买进,你赚钱了,意味着别人把钱拿出来,追高我认为是一种不理智的行为,很容易把自己套进去,站在低的位置等待成本高的位置的人去拉升,是一种稳中求胜的硬道理,比如力帆股份 华泰股份 中顺洁柔 荣安地产等给你参考,都属于前位套住许多人的低估值股。
步骤2:如果选择高位卖出制定自己计划赢利的目标,到了那位置,发现许多人都被套进来的时候,就卖了,没有几个人能在绝对的顶部逃跑,也没有人能在绝对的底部买进,这对散户来说不现实。
纸上谈兵再好,都不如实盘操作来的快,建议你新手的话,先拿出1/4或者1/3,强迫自己在这个资金内先做一段时间内做盘,别受涨的诱惑也别受跌的干扰,就使用那么多资金,经验上去了,自然水到渠成。
另送你几字真言,你如果能真正做到,你也是股神:1分运气,2分技术,3分经验,4分耐心,可见,真正炒股赚钱的,最关键的是耐心,这也是许多老大妈连股票软件都不会用,但里面的股票个个赚百分之几百的原因。
10. 如何简单理解量化投资
1、定义:
量化投资是将投资理念及策略通过具体指标、参数的设计,体现到具体的模型中,让模型对市场进行不带任何情绪的跟踪
2、特点:
具有快速高效、客观理性、收益与风险平衡和个股与组合平衡等四大特点
3、具体运行
一、估值与选股
估值:对上市公司进行估值是公司基本面分析的重要方法,在“价值投资”的基本逻辑下,可以通过对公司的估值判断二级市场股票价格的扭曲程度,继而找出价值被低估或高估的股票,作为投资决策的参考。
二、资产配置
资产配置指资产类别选择、投资组合中各类资产的配置比例以及对这些混合资产进行实时管理。
三、基于行为金融学的投资策略
金业中的应用将主要集中在量化选股、资产配置、绩效评估与风险管理、行为金融等方面,而随着包括基金在内的机构投资者占比的不断提高、衍生品工具的日渐丰富(股指期货、融资融券等)以及量化投资技术的进步,基金管理人的投资策略将会越来越复杂,程序化交易(系统)也将有快速的发展。