python与股票投资
❶ 如何用Python和机器学习炒股赚钱
如何用Python和机器学习炒股赚钱?(图片太多未贴,可以去找原文)
我终于跑赢了标准普尔 500 指数 10 个百分点!听起来可能不是很多,但是当我们处理的是大量流动性很高的资本时,对冲基金的利润就相当可观。更激进的做法还能得到更高的回报。
这一切都始于我阅读了 Gur Huberman 的一篇题为《Contagious Speculation and a Cure for Cancer: A Non-Event that Made Stock Prices Soar》的论文。该研究描述了一件发生在 1998 年的涉及到一家上市公司 EntreMed(当时股票代码是 ENMD)的事件:
「星期天《纽约时报》上发表的一篇关于癌症治疗新药开发潜力的文章导致 EntreMed 的股价从周五收盘时的 12.063 飙升至 85,在周一收盘时接近 52。在接下来的三周,它的收盘价都在 30 以上。这股投资热情也让其它生物科技股得到了溢价。但是,这个癌症研究方面的可能突破在至少五个月前就已经被 Nature 期刊和各种流行的报纸报道过了,其中甚至包括《泰晤士报》!因此,仅仅是热情的公众关注就能引发股价的持续上涨,即便实际上并没有出现真正的新信息。」
在研究者给出的许多有见地的观察中,其中有一个总结很突出:
「(股价)运动可能会集中于有一些共同之处的股票上,但这些共同之处不一定要是经济基础。」
我就想,能不能基于通常所用的指标之外的其它指标来划分股票。我开始在数据库里面挖掘,几周之后我发现了一个,其包含了一个分数,描述了股票和元素周期表中的元素之间的「已知和隐藏关系」的强度。
我有计算基因组学的背景,这让我想起了基因和它们的细胞信号网络之间的关系是如何地不为人所知。但是,当我们分析数据时,我们又会开始看到我们之前可能无法预测的新关系和相关性。
选择出的涉及细胞可塑性、生长和分化的信号通路的基因的表达模式
和基因一样,股票也会受到一个巨型网络的影响,其中各个因素之间都有或强或弱的隐藏关系。其中一些影响和关系是可以预测的。
我的一个目标是创建长的和短的股票聚类,我称之为「篮子聚类(basket clusters)」,我可以将其用于对冲或单纯地从中获利。这需要使用一个无监督机器学习方法来创建股票的聚类,从而使这些聚类之间有或强或弱的关系。这些聚类将会翻倍作为我的公司可以交易的股票的「篮子(basket)」。
首先我下载了一个数据集:http://54.174.116.134/recommend/datasets/supercolumns-elements-08.html,这个数据集基于元素周期表中的元素和上市公司之间的关系。
然后我使用了 Python 和一些常用的机器学习工具——scikit-learn、numpy、pandas、matplotlib 和 seaborn,我开始了解我正在处理的数据集的分布形状。为此我参考了一个题为《Principal Component Analysis with KMeans visuals》的 Kaggle Kernel:https://www.kaggle.com/arthurtok/principal-component-analysis-with-kmeans-visuals
importnumpy asnp
importpandas aspd
fromsklearn.decomposition
importPCA
fromsklearn.cluster
importKMeans
importmatplotlib.pyplot asplt
importseaborn assbnp.seterr(divide= 'ignore', invalid= 'ignore')
# Quick way to test just a few column features
# stocks = pd.read_csv('supercolumns-elements-nasdaq-nyse-otcbb-general-UPDATE-2017-03-01.csv', usecols=range(1,16))
stocks = pd.read_csv( 'supercolumns-elements-nasdaq-nyse-otcbb-general-UPDATE-2017-03-01.csv')print(stocks.head())str_list = []
forcolname, colvalue instocks.iteritems():
iftype(colvalue[ 1]) == str: str_list.append(colname)
# Get to the numeric columns by inversion
num_list = stocks.columns.difference(str_list)stocks_num = stocks[num_list]print(stocks_num.head())
输出:简单看看前面 5 行:
概念特征的皮尔逊相关性(Pearson Correlation)。在这里案例中,是指来自元素周期表的矿物和元素:
stocks_num = stocks_num.fillna(value= 0, axis= 1)X = stocks_num.values
fromsklearn.preprocessing importStandardScalerX_std = StandardScaler().fit_transform(X)f, ax = plt.subplots(figsize=( 12, 10))plt.title( 'Pearson Correlation of Concept Features (Elements & Minerals)')
# Draw the heatmap using seaborn
sb.heatmap(stocks_num.astype(float).corr(),linewidths= 0.25,vmax= 1.0, square= True, cmap= "YlGnBu", linecolor= 'black', annot= True)sb.plt.show()
输出:(这个可视化例子是在前 16 个样本上运行得到的)。看到元素周期表中的元素和上市公司关联起来真的很有意思。在某种程度时,我想使用这些数据基于公司与相关元素或材料的相关性来预测其可能做出的突破。
测量「已解释方差(Explained Variance)」和主成分分析(PCA)
已解释方差=总方差-残差方差(explained variance = total variance - resial variance)。应该值得关注的 PCA 投射组件的数量可以通过已解释方差度量(Explained Variance Measure)来引导。Sebastian Raschka 的关于 PCA 的文章对此进行了很好的描述,参阅:http://sebastianraschka.com/Articles/2015_pca_in_3_steps.html
# Calculating Eigenvectors and eigenvalues of Cov matirx
mean_vec = np.mean(X_std, axis= 0)cov_mat = np.cov(X_std.T)eig_vals, eig_vecs = np.linalg.eig(cov_mat)
# Create a list of (eigenvalue, eigenvector) tuples
eig_pairs = [ (np.abs(eig_vals[i]),eig_vecs[:,i]) fori inrange(len(eig_vals))]
# Sort from high to low
eig_pairs.sort(key = lambdax: x[ 0], reverse= True)
# Calculation of Explained Variance from the eigenvaluestot = sum(eig_vals)var_exp = [(i/tot)* 100fori insorted(eig_vals, reverse= True)] cum_var_exp = np.cumsum(var_exp)
# Cumulative explained variance# Variances plot
max_cols = len(stocks.columns) - 1plt.figure(figsize=( 10, 5))plt.bar(range(max_cols), var_exp, alpha= 0.3333, align= 'center', label= 'indivial explained variance', color = 'g')plt.step(range(max_cols), cum_var_exp, where= 'mid',label= 'cumulative explained variance')plt.ylabel( 'Explained variance ratio')plt.xlabel( 'Principal components')plt.legend(loc= 'best')plt.show()
输出:
从这个图表中我们可以看到大量方差都来自于预测主成分的前 85%。这是个很高的数字,所以让我们从低端的开始,先只建模少数几个主成分。更多有关分析主成分合理数量的信息可参阅:http://setosa.io/ev/principal-component-analysis
使用 scikit-learn 的 PCA 模块,让我们设 n_components = 9。代码的第二行调用了 fit_transform 方法,其可以使用标准化的电影数据 X_std 来拟合 PCA 模型并在该数据集上应用降维(dimensionality rection)。
pca = PCA(n_components= 9)x_9d = pca.fit_transform(X_std)plt.figure(figsize = ( 9, 7))plt.scatter(x_9d[:, 0],x_9d[:, 1], c= 'goldenrod',alpha= 0.5)plt.ylim( -10, 30)plt.show()
输出:
这里我们甚至没有真正观察到聚类的些微轮廓,所以我们很可能应该继续调节 n_component 的值直到我们得到我们想要的结果。这就是数据科学与艺术(data science and art)中的「艺术」部分。
现在,我们来试试 K-均值,看看我们能不能在下一章节可视化任何明显的聚类。
K-均值聚类(K-Means Clustering)
我们将使用 PCA 投射数据来实现一个简单的 K-均值。使用 scikit-learn 的 KMeans() 调用和 fit_predict 方法,我们可以计算聚类中心并为第一和第三个 PCA 投射预测聚类索引(以便了解我们是否可以观察到任何合适的聚类)。然后我们可以定义我们自己的配色方案并绘制散点图,代码如下所示:
# Set a 3 KMeans clustering
kmeans = KMeans(n_clusters= 3)
# Compute cluster centers and predict cluster indices
X_clustered = kmeans.fit_predict(x_9d) # Define our own color map
LABEL_COLOR_MAP = { 0: 'r', 1: 'g', 2: 'b'}label_color = [LABEL_COLOR_MAP[l] forl inX_clustered]
# Plot the scatter digram
plt.figure(figsize = ( 7, 7))plt.scatter(x_9d[:, 0],x_9d[:, 2], c= label_color, alpha= 0.5)plt.show()
输出:
这个 K-均值散点图看起来更有希望,好像我们简单的聚类模型假设就是正确的一样。我们可以通过这种颜色可视化方案观察到 3 个可区分开的聚类。
当然,聚类和可视化数据集的方法还有很多,参考:https://goo.gl/kGy3ra使用 seaborn 方便的 pairplot 函数,我可以以成对的方式在数据框中自动绘制所有的特征。我们可以一个对一个地 pairplot 前面 3 个投射并可视化:
# Create a temp dataframe from our PCA projection data "x_9d"
df = pd.DataFrame(x_9d)df = df[[ 0, 1, 2]]df[ 'X_cluster'] = X_clustered
# Call Seaborn's pairplot to visualize our KMeans clustering on the PCA projected data
sb.pairplot(df, hue= 'X_cluster', palette= 'Dark2', diag_kind= 'kde', size= 1.85)sb.plt.show()
输出:
构建篮子聚类(Basket Clusters)
你应该自己决定如何微调你的聚类。这方面没有什么万灵药,具体的方法取决于你操作的环境。在这个案例中是由隐藏关系所定义的股票和金融市场。
一旦你的聚类使你满意了,你就可以设置分数阈值来控制特定的股票是否有资格进入一个聚类,然后你可以为一个给定的聚类提取股票,将它们作为篮子进行交易或使用这些篮子作为信号。你可以使用这种方法做的事情很大程度就看你自己的创造力以及你在使用深度学习变体来进行优化的水平,从而基于聚类或数据点的概念优化每个聚类的回报,比如 short interest 或 short float(公开市场中的可用股份)。
你可以注意到了这些聚类被用作篮子交易的方式一些有趣特征。有时候标准普尔和一般市场会存在差异。这可以提供本质上基于「信息套利(information arbitrage)」的套利机会。一些聚类则和谷歌搜索趋势相关。
看到聚类和材料及它们的供应链相关确实很有意思,正如这篇文章说的一样:https://www.fairphone.com/en/2017/05/04/zooming-in-10-materials-and-their-supply-chains/
我仅仅使用该数据集操作了 Cobalt(钴)、Copper(铜)、Gallium(镓)和 Graphene(石墨烯)这几个列标签,只是为了看我是否可能发现从事这一领域或受到这一领域的风险的上市公司之间是否有任何隐藏的联系。这些篮子和标准普尔的回报进行了比较。
通过使用历史价格数据(可直接在 Quantopian、Numerai、Quandl 或 Yahoo Finance 使用),然后你可以汇总价格数据来生成预计收益,其可使用 HighCharts 进行可视化:
我从该聚类中获得的回报超过了标准普尔相当一部分,这意味着你每年的收益可以比标准普尔还多 10%(标准普尔近一年来的涨幅为 16%)。我还见过更加激进的方法可以净挣超过 70%。现在我必须承认我还做了一些其它的事情,但因为我工作的本质,我必须将那些事情保持黑箱。但从我目前观察到的情况来看,至少围绕这种方法探索和包装新的量化模型可以证明是非常值得的,而其唯一的缺点是它是一种不同类型的信号,你可以将其输入其它系统的流程中。
生成卖空篮子聚类(short basket clusters)可能比生成买空篮子聚类(long basket clusters)更有利可图。这种方法值得再写一篇文章,最好是在下一个黑天鹅事件之前。
如果你使用机器学习,就可能在具有已知和隐藏关系的上市公司的寄生、共生和共情关系之上抢占先机,这是很有趣而且可以盈利的。最后,一个人的盈利能力似乎完全关乎他在生成这些类别的数据时想出特征标签(即概念(concept))的强大组合的能力。
我在这类模型上的下一次迭代应该会包含一个用于自动生成特征组合或独特列表的单独算法。也许会基于近乎实时的事件,这可能会影响那些具有只有配备了无监督学习算法的人类才能预测的隐藏关系的股票组。
❷ python实现资产配置(1)----Markowitz 投资组合模型
现假设有A, B, C, D, E五只股票的收益率数据((第二日收盘价-第一日收盘价)/第一日收盘价)), 如果投资人的目标是达到20%的年收益率,那么该如何进行资产配置,才能使得投资的风险最低?
更一般的问题,假设现有x 1 ,x 2 ,...,x n , n支风险资产,且收益率已知,如果投资人的预期收益为goalRet,那么该如何进行资产配置,才能使得投资的风险最低?
1952年,芝加哥大学的Markowitz提出现代资产组合理论(Modern Portfolio Theory,简称MPT),为现代西方证券投资理论奠定了基础。其基本思想是,证券投资的风险在于证券投资收益的不确定性。如果将收益率视为一个数学上的随机变量的话,证券的期望收益是该随机变量的数学期望(均值),而风险可以用该随机变量的方差来表示。
对于投资组合而言,如何分配各种证券上的投资比例,从而使风险最小而收益最大?
答案是将投资比例设定为变量,通过数学规划,对每一固定收益率求最小方差,对每一个固定的方差求最大收益率,这个多元方程的解可以决定一条曲线,这条曲线上的每一个点都对应着最优投资组合,即在给定风险水平下,收益率最大,这条曲线称作“有效前沿” (Efficient Frontier)。
对投资者而言,不存在比有效前沿更优的投资组合,只需要根据自己的风险偏好在有效前沿上寻找最优策略。
简化后的公式为:
其中 p 为投资人的投资目标,即投资人期待的投资组合的期望值. 目标函数说明投资人资产分配的原则是在达成投资目标 p 的前提下,要将资产组合的风险最小化,这个公式就是Markowitz在1952年发表的'Portfolio Selection'一文的精髓,该文奠定了现代投资组合理论的基础,也为Markowitz赢得了1990年的诺贝尔经济学奖. 公式(1)中的决策变量为w i , i = 1,...,N, 整个数学形式是二次规划(Quadratic Programming)问题,在允许卖空的情况下(即w i 可以为负,只有等式约束)时,可以用拉格朗日(Lagrange)方法求解。
有效前缘曲线如下图:
我们考虑如下的二次规划问题
运用拉格朗日方法求解,可以得到
再看公式(1),则将目标函数由 min W T W 调整为 min 1/2(W T W), 两问题等价,写出的求解矩阵为:
工具包: CVXOPT python凸优化包
函数原型: CVXOPT.solvers.qp(P,q,G,h,A,b)
求解时,将对应的P,q,G,h,A,b写出,带入求解函数即可.值得注意的是输入的矩阵必须使用CVXOPT 中的matrix函数转化,输出的结果要使用 print(CVXOPT.solvers.qp(P,q,G,h,A,b)['x']) 函数才能输出。
这里选取五支股票2014-01-01到2015-01-01的收益率数据进行分析.
选取的五支股票分别为: 白云机场, 华夏银行, 浙能电力, 福建高速, 生益科技
先大体了解一下五支股票的收益率情况:
看来,20%的预期收益是达不到了。
接下来,我们来看五支股票的相关系数矩阵:
可以看出,白云机场和福建高速的相关性较高,因为二者同属于交通版块。在资产配置时,不利于降低非系统性风险。
接下来编写一个MeanVariance类,对于传入的收益率数据,可以进行给定预期收益的最佳持仓配比求解以及有效前缘曲线的绘制。
绘制的有效前缘曲线为:
将数据分为训练集和测试集,并将随机模拟的资产配比求得的累计收益与测试集的数据进行对比,得到:
可以看出,在前半段大部分时间用Markowitz模型计算出的收益率要高于随机模拟的组合,然而在后半段却不如随机模拟的数据,可能是训练的数据不够或者没有动态调仓造成的,在后面写策略的时候,我会加入动态调仓的部分。
股票分析部分:
Markowitz 投资组合模型求解
蔡立专:量化投资——以python为工具. 电子工业出版社
❸ 单支股票的投资额为本金的百分之十,用python怎么表示
那股票的投资额为本金的10%。单只股票投资额为本金的10%。说明你的资金池只占0.1%。
❹ 如何利用机器学习算法优化股票投资组合
学习下量化回测吧backtrader了解下具体也可以私聊
以下是学习Backtrader的步骤:
1.学习Python编程语言:如果您已经熟悉Python,请跳腔裤过此步骤。如果您是新手,请学习Python编程语言,这将为您在Backtrader中编写代码提供很好的基础。
2.学习量化交易:如果您已经了解量岩圆举化交易,您可以跳过此步骤。如果您是新手,请学习量化交易的基础知识,例如交易策略和风险管理。
3.安装Backtrader:在安装Backtrader之前,请确保您已经安装了Python环境。可以在终端中使用pip命令安装Backtrader。
4.学习Backtrader文档:Backtrader具有完整的文档,其中包括API参考和示例代码。建议您仔细阅读文档并使用示例代码。
5.编写交易策略:使用Backtrader编写交易策略。Backtrader支持多种类型的数据源,包括CSV文件和实时数据流。您可以使用Backtrader内置的指标和信号,也可以自定义指标和信号。
6.回测交易策略:使用历史数据回测您的交易策略。Backtrader支持多种回测方式,包括标准回测和Walk Forward分析。
7.优化交易策略:使用Backtrader进行参数优化,以确定最佳的交易策略参数粗碧。
❺ 如何用python计算某支股票持有90天的收益率
defget(self,get,money):
print“ATM:”
print“yourmoneyis+“,self.get,”%aday
self.today=self.money*(self.get/100)+self.money
print“nowyouhave”,self.today
self.tomorrow=self.today*(self.get/100)+self.today
print“tomorrowyouwellhave”,self.tomorrow
get(50,10000)
这个代码会给你1天后和2天后的余额,如果要显示九十天,还请您自己打完
❻ Python具体指什么,可以运用在哪些方面呢
你好,主要运用在这些方面:
一、人工智能,包括数据分析、计算机视觉、自然语言处理等等
现在python已经基唯磨本成了人工智能的标准语言了,一般都是C/C++写个底层运算库,然后用python做脚本。各种框架层出不穷,tensorflow/pytorch等等。
二、web开发
python光是web开发的框架至少得有几十个吧,而漏世且用的人都很多,从后端到前端各种配套服务都非常齐全。
三、爬虫
我估计很多人学爬虫就是从python入手的
四、各类App的内置脚本
有很多程序里面的内置脚本就是python,比如sublime text、blender3d,所以从这个角度来看啊,python能干的事情就无限多了,文本编辑、3d建模、股票投返山肢资等等,只有你想不到的,没有做不到的。
至于python能否开发qq、浏览器这种应用软件?
只用python是不太行的,因为python是解释性的,如何打包成二进制文件其实挺麻烦的,而且速度肯定比不上c++什么的,但是作为脚本还是不错的。
❼ python实现资产配置(2)--Blacklitterman 模型
在 python实现资产配置(1)----Markowitz 投资组合模型 中, 我们已经见过如何使用Markowitz求得最优资产配比. 这是一种在已知未来各资产的概率分布,然后再求解的方法.
Markowitz模型输入参数包括历史数据法和情景分析法两种方法,情景分析法的缺点是主观因扒山素,随意性太强,因此使用历史数据法, 将资产的均值和协方差输入模型是比较常见的作法. 不过, 不足之处很明显: 未来的资产收益率分布不一定与过去相同. 此外, Markowitz 模型结果对输入参数过于敏感.
Black-Litterman模型就是基于此的改进. 其核心思想是将投资者对大类资产的观点 (主观观点) 与市场均衡收益率 (先验预期收益率)相结合,从而形成新的预期收益率(后验预期收益率). 这里的先验预期收益率的分布可以是贝叶斯推断中的先验概率密度函数的多元正态分布形式,投资者的主观观点就是贝叶斯推断中的似然函数(可以看作新的信息, 因为做出主观判断必然是从外界获取得到了这些资产的收益率变化信息), 而相应的, 后验预期收益率也可以从后验概率密度函数中得到. 具体的推导可以看我的这篇文章: 从贝叶斯定理到贝叶斯推断 .
BL模型的求解步骤包括下面几步:
(1) 使用历史数据估计预期收益率的协方差矩阵作为先验概率密度函数的协方差.
(2) 确定市场预期之收益率向量, 也就是先验预期收益之期望值. 作为先验概率密度函数的均值. 或者使用现有的期望值和方差来反推市场隐含的均衡收益率(Implied Equilibrium Return Vector), 不过在使用这种方法时, 需要知道无风险收益率 的大小.
(3) 融合投资人的个人观点,即根据历史数据(看法变量的方差)和个人看法(看法向量的均值)
(4) 修正后验收益.
是均衡收益率协方差的调整系数,可以根据信春锋中心水平来判断. 是历史资产收益率的协方差矩阵, P是投资者的观点矩阵, 是似然函数(即投资者观点函数)中的协方差矩阵,其值为 的对角阵, 是先验收益率的期望值.
(5) 投资组合优化: 将修正后的期望值与协方差矩阵即 重新代入Markowitz投资组合模型求解.
(1)定义求解函数,输入为投资者观点P,Q以及目前资产的市场收益率矩阵,输出为后验的市场收益率和协方差矩阵.
(2) 实列分析
我们继续研究 python实现资产配置(1)----Markowitz 投资组合模型 中的五支股票: 白云机场, 福建高速, 华夏基轮银行, 生益科技和浙能电力. 假设现在分析师的观点为:
获取股票数据, 并且获得后验的均值和方差:
这时候,已经可以使用Markowitz模型进行资产的配置. 定义新的函数blminVar以求解资产配置权重. 该函数的输入变量为blacklitterman函数的输出结果, 以及投资人的目标收益率goalRet.假设目标收益率为年化70%,则goalRet = 0.7:
输出结果为:
0-5分别对应上面的五只股票.
❽ 用Python中的蒙特卡洛模拟两支股票组成的投资组合的价格趋势分析
蒙特卡洛模拟是一种模拟把真实系统中的概率过程用岁虚计算机程序来模拟的方法。对于投资组合的价格趋势分析,可以使用Python中的蒙特卡洛模拟。首册茄先,回顾投资组合的价格趋势。投资组合中的股票价格的趋势是受多种因素影响的,可分为经济、政治和技术因素,其中经济因素最重要。因此,蒙特卡洛模拟可以模拟这些因素对投资组合价格趋势的影响,并通过计算机绘制投资组合价格趋势的曲线。
Python中的蒙特卡洛模拟首先需要计算投资组合中各股票价格的每一期的收益率,其次,计算出投资组合的收益率;随后,计算预测投资组合的期权价格,并将所有的期权价格叠加起来,从而绘制投资组合的价格曲线。最后,在投资组合的价格曲线的基础上,可以分析投资组合在不同时期的价格走州雀察势,并进行投资组合结构的调整,从而获得最优投资组合。
❾ 《Python与量化投资从基础到实战》pdf下载在线阅读,求百度网盘云资源
《07 Python股票量化投资课程(完结)》网络网盘资源免费下载
链接:https://pan..com/s/1MgFE6VMeR8H6YkS2jxEZmw
07 Python股票量化投资课程(完结)|09课后大作业|08第八课资料|07第七课资料|06第六课资料|05第五课资料|04第四课资料|03第三课资料|02第二课资料|01第一课资料|25人工智能与量化投资(下).mp4|24人工智能与量化投资(上).mp4|23实盘交易(下).mp4|22实盘交易(中).mp4|21实盘交易(上).mp4
❿ python的量化代码怎么用到股市中
2010 ~ 2017 沪深A股各行业量化分析
在开始各行业的量化分析之前,我们需要先弄清楚两个问题:
第一,A股市场上都有哪些行业;
第二,各行业自2010年以来的营收、净利润增速表现如何?
第一个问题
很好回答,我们使用JQData提供的获取行业成分股的方法,输入get_instries(name='sw_l1')
得到申万一级行业分类结果如下:它们分别是:【农林牧渔、采掘、化工、钢铁、有色金属、电子、家用电器、食品饮料、纺织服装、轻工制造、医药生物、公用事业、交通运输、房地产、商业贸易、休闲服务、综合、建筑材料、建筑装饰、电器设备、国防军工、计算机、传媒、通信、银行、非银金融、汽车、机械设备】共计28个行业。
第二个问题
要知道各行业自2010年以来的营收、净利润增速表现,我们首先需要知道各行业在各个年度都有哪些成分股,然后加总该行业在该年度各成分股的总营收和净利润,就能得到整个行业在该年度的总营收和总利润了。这部分数据JQData也为我们提供了方便的接口:通过调用get_instry_stocks(instry_code=‘行业编码’, date=‘统计日期’),获取申万一级行业指定日期下的行业成分股列表,然后再调用查询财务的数据接口:get_fundamentals(query_object=‘query_object’, statDate=year)来获取各个成分股在对应年度的总营收和净利润,最后通过加总得到整个行业的总营收和总利润。这里为了避免非经常性损益的影响,我们对净利润指标最终选取的扣除非经常性损益的净利润数据。
我们已经获取到想要的行业数据了。接下来,我们需要进一步分析,这些行业都有什么样的增长特征。
我们发现,在28个申万一级行业中,有18个行业自2010年以来在总营收方面保持了持续稳定的增长。它们分别是:【农林牧渔,电子,食品饮料,纺织服装,轻工制造,医药生物,公用事业,交通运输,房地产,休闲服务,建筑装饰,电气设备,国防军工,计算机,传媒,通信,银行,汽车】;其他行业在该时间范围内出现了不同程度的负增长。
那么,自2010年以来净利润保持持续增长的行业又会是哪些呢?结果是只有5个行业保持了基业长青,他们分别是医药生物,建筑装饰,电气设备,银行和汽车。(注:由于申万行业在2014年发生过一次大的调整,建筑装饰,电气设备,银行和汽车实际从2014年才开始统计。)
从上面的分析结果可以看到,真正能够保持持续稳定增长的行业并不多,如果以扣非净利润为标准,那么只有医药生物,建筑装饰,电气设备,银行和汽车这五个行业可以称之为优质行业,实际投资中,就可以只从这几个行业中去投资。这样做的目的是,一方面,能够从行业大格局层面避免行业下行的风险,绕开一个可能出现负增长的的行业,从而降低投资的风险;另一方面,也大大缩短了我们的投资范围,让投资者能够专注于从真正好的行业去挑选公司进行投资。
「2010-2017」投资于优质行业龙头的收益表现
选好行业之后,下面进入选公司环节。我们知道,即便是一个好的行业也仍然存在表现不好的公司,那么什么是好的公司呢,本文试图从营业收入规模和利润规模和来考察以上五个基业长青的行业,从它们中去筛选公司作为投资标的。
3.1按营业收入规模构建的行业龙头投资组合
首先,我们按照营业收入规模,筛选出以上5个行业【医药生物,建筑装饰,电气设备,银行和汽车】从2010年至今的行业龙头如下表所示:
结论
通过以上行业分析和投资组合的历史回测可以看到:
先选行业,再选公司,即使是从2015年股灾期间开始投资,至2018年5月1号,仍然能够获得相对理想的收益,可以说,红杉资本的赛道投资法则对于一般投资者还是比较靠谱的。
在构建行业龙头投资组合时,净利润指标显著优于营业收入指标,获得的投资收益能够更大的跑赢全市场收益率
市场是不断波动的,如果一个投资者从股灾期间开始投资,那么即使他买入了上述优质行业的龙头组合,在近3年也只能获得12%左右的累计收益;而如果从2016年5月3日开始投资,那么至2018年5月2日,2年时间就能获得超过50%以上的收益了。所以,在投资过程中选择时机也非常重要。
出自:JoinQuant 聚宽数据 JQData