正态分布与股票投资
1. 对数正态分布的基本概念
在概率论与统计学中,对数正态分布是对数为正态分布的任意随机变量的概率分布。如果 X 是服从正态分布的随机变量,则 exp(X) 服从对数正态分布;同样,如果 Y 服从对数正态分布,则 ln(Y) 服从正态分布。 如果一个变量可以看作是许多很小独立因子的乘积,则这个变量可以看作是对数正态分布。一个典型的例子是股票投资的长期收益率,它可以看作是每天收益率的乘积。
设ξ服从对数正态分布,其密度函数为:
数学期望和方差分别为:
2. 为什么股票价格服从对数正态分布
我们可以假设连续复利,用lnS1-lnS0来近似股票的收益(S1-S0)/S0,而且根据集合布朗运动可知,此收益是服从正态分布的。
3. 股票投资心理分析的目录
第一部分心理学与证券投资
第一章导论
一、关于市场
二、投资还是投机
三、基本分析与技术分析
四、心理学与股票投资
第二章心理学的基础知识
一、概述
二、心理过程
三、个性心理
第三章群体心理
一、群体与群体心理
二、对群体心理的一些早期研究
三、流言的心理分析
四、群体心理的感染效应
五、时尚或流行心理
六、正态分布
七、集群行为与去个性化
八、群体极化与群体思维
第二部分投资者心理分析
第四章股票投资中常见的一些心理幻觉
第五章股票投资中如何保持客观性
一、恐惧心理
二、贪婪心理
三、过度交易的市场化行为
四、希望:最精致的心理陷阱
五、克服习惯化的投资偏好
六、克服股市心理焦虑症
第六章避免外部影响坚持独立思考
一、大众媒体
二、市场传闻与小道消息
三、专家与权威的意见
四、绿色草坪效应
第七章满招损谦受益
第八章耐心是获利之本
第九章遵守纪律坚持原则
第十章投资人情绪的调节与控制(上)
一、焦虑过度
二、固执己见
三、杞人忧天
四、拒绝承认事实
第十一章投资人情绪的调节与控制(下)
第十二章投资人的个性问题
一、优柔寡断
二、赌性十足
三、完美主义
四、抑郁心理
五、得意忘形
第三部分投资大众心理
第十三章股票投资中的社会心理效应
一、从众效应
二、时狂现象
三、暗示流言的作用
四、感染效应
第十四章从众与反从众:何时持相反意见(上)
第十五章从众与反从众:何时持相反意见(中)
一、美国:佛罗里达地产泡沫
二、英国:南海泡沫
三、泡沫膨胀期
四、泡沫破灭期
第十六章从众与反从众:何时持相反意见(下)
一、变通性
二、对未来不要妄加猜测
三、未来是由事件本身决定,而不是个人所能控制
四、一致性意见如何形成
五、历史会重复,但相反意见者却要认真对待
六、滥用相反意见理论同样会走向反面
第十七章突发消息获利良机
一、一个人人皆知的消息是需要打折扣的
二、我们如何通过分析市场对消息的反应而获利
三、投资人的独特选择——丑闻投资
第四部分投资者的心理素质与心理策略
第十八章成功投资者的心理归因
一、沃伦·巴菲特
二、约翰·坦普尔顿
第十九章投资者需具备的心理素质
一、投资前的心理准备
二、辩证的思维
三、必备的心理素质
第二十章投资交易的一些心理策略
一、确立投资目标
二、确立投资理念
三、确立投资计划
四、确立投资评估方法
第二十一章投资交易的十九条原则
一、心理调控
二、资金管理
主要参考文献
4. 《超简交易》连载5:正态分布与均值回归
一、正态分布
正态分布(Normal distribution),也称常态分布,是统计学中最重要的一种概率分布。正态分布概念是由德国数学家与天文学家Moivre于1733年首次提出的,但由于德国数学Gauss(C.F.Gauss,1777-1855)率先将其应用于天文学研究,故此正态分布又称高斯分布(Gaussian distribution),是统计学中最重要的一种概率分布。
正态分布描述的是某件事出现不同结果的概率分布情况,属于一般规律。正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。钟形曲线的特点是:两头低,中间高,左右对称,曲线与横轴间的面积总等于1。如下图所示:
例如:假设抽样调查了一个学校100名18岁男大学生身高(cm),身高为随机变量、相互独立,服从正态分布。身高的均值μ为172.70cm,标准差σ=4.01cm。这说明:均值μ代表了这些男大学生身高的期望值(或平均身高),中等身高的人比较多,而特别高的和特别低的人比较少。均值μ加减一个标准差σ会有68.27%的男大学生身高处于这个范围,均值μ加减1.96个标准差σ会有95%的男大学生身高处于这个范围,均值μ加减2.58个标准差σ会有99%的男大学生身高处于这个范围。
正态分布对我们有什么意义呢?与正态分布关系紧密的一个现象是“均值回归”。
均值回归(Mean Reversion)是以正态分布假设为基础,认为事物在长期的变化过程中,总有向“平衡位置”(或均值位置)靠拢的倾向。“均值回归”现象是英国人弗朗西斯·高尔顿(FrancisGalton,1822-1911)发现的。高尔顿出身名门,与著名的查尔斯·达尔文(Charles Robert Darwin,1809-1882)是堂兄弟。
大约1875年,高尔顿用一种甜豌豆种子做实验,经过大量、艰辛的实验,高尔顿发现,母豌豆的直径变化范围比子豌豆直径的变化范围要大很多。母豌豆平均直径为0.18英寸,其变化范围为0.15~0.21英寸,或者说在平均值0.18英寸两侧各0.03英寸之内。子豌豆的平均直径为0.163英寸,其变化范围是0.154~0.173英寸,或者说是仅在平均值0.163英寸两边各0.01英寸范围内变动。子豌豆直径的分布比母豌豆直径的分布更为紧凑。
这种回归,在自然界是非常必要的。因为如果这种回归的进程不存在的话,那么,大豌豆会繁殖出更大的豌豆,小的豌豆会繁殖出更小的豌豆……如果这样,这个世界就会两极化,只有侏儒和巨人。大自然会使每一代变得越来越畸形,最终达到我们无法接受的极端。均值回归原理适用于日常生活,比如在体育运动方面,人人都有一个平均水平,只是有时会超水平发挥,有时会低于平均水平。任何一连串的重复活动,其结果通常都会接近平均值或中间值。
例如:打网球时连续挥拍24次,如果有一个球打得特别好,下一个球及可能有点拖泥带水。如果不小心打了一记球,下一个球通产会打得漂亮一点。均值回归原理在自然领域获得了验证,它又与一些社会现象颇为相似,例如:“天下大事,分久必合,合久必分”、“繁荣的必将衰亡,衰亡的必将繁荣”、“富不过三代”、“君子之泽,五世而斩”……等等。
均值回归原理也激发了各种风险承担和预测理论的产生。在圣经中,当约瑟夫对法老王预言“七个富年后必是七个荒年”的时候,他一定已经知道这是事物注定的规律了。而当J.P.摩根认为“市场是波动的”的时候,他所要表达的也正是这个意思。乔治·索罗斯也说:“凡事总有盛极而衰的时候,大好之后便是大坏”。
正如大多数人类活动一样,股市中价格的均值回归从理论上讲具有必然性。因为有一点是可以肯定的,股票价格不能总是上涨或下跌,一种趋势不管其持续的时间多长都不能永远持续下去。在一个趋势内,股票价格呈持续上升或下降,我们称之为均值偏离(Mean Aversion,也叫均值回避)。当出现相反趋势时就呈均值回归(Mean Reversion)。
这也是许多投资者所坚信的信条:当他们说某只股票已经“高估”或者“低估”时,他们指的是恐惧和贪婪使得人们推动股价远离了它的“内在价值”,但是股价最终是要回归的。
二、何时回归
巴菲特:“我觉得要预测会发生什么比较简单,但预测何时发生会比较困难”。“内在价值”,也许真的会“回归”,但关键在于什么时候回归。
不同的股票市场,回归的周期不一样,就是对同一个股票市场来说,每次回归的周期也不一样。有时,长期趋势来得太迟,即便均值回归原理发挥了作用,也无法拯救我们了。到目前为止,均值回归原理仍不能预测的是回归的时间间隔,即回归的周期“随机漫步”。
一次,经济学家凯恩斯说道:“先生们,从长远来看,我们都会死掉的。”如果在狂风暴雨的季节里,经济学家仅能预言:很久后风暴会过去的,一切又会恢复平静的,那么,他们的工作就太简单、太无用了。如果一个人永远强调房价会跌(或股价会涨),那么这人更适合做民意代表,而不是预测者。从长远看,没有只涨不跌的商品。如果不顾事实,永远说会跌,这个猜硬币正反有何区别?只要不改口,硬币总有出反面的时候。
难道均值回归只是一种中看不中用的理论吗?在后续章节中,将会给出变通的方法,讲述如何利用均值回归原理,来捕捉行情走势的波动。
三、回归何处
均值回归是一个简单的概念:身材非常高的父母所生的孩子,一般会比他们的父母矮;而身材非常矮的父母所生的孩子,一般会比他们的父母高。对于大多数人来说,这是个很容易理解的概念。将这个观点应用到证券价格的波动中,意味着证券价格会返回到平均值。
但是,我们遇到一个问题,身高的反转是两代人之间的生理现象,而价格反转是一个实时的动态过程。还有一个重要问题就是“均值”怎么确定。均值本身到底是多少,在经济生活中却是个很模糊的数字。昨天的均值很可能被今天新的正常值所取代,而我们对这个正常值却一无所知。如果仅仅因为过去的经验,认为会回归到原来的均值上去,那是很危险的事情。
有人认为巴菲特是价值投资理念,也是基于均值回归原理,但是学巴菲特的人多如牛毛,能够成功的鲜如牛角。查理·芒格作为沃伦·巴菲特的最佳拍档,有“幕后师爷”和“终极秘密武器”之称。
有人曾问:如何评估一只股票的“内在价值”?
芒格回答:搞清一只股票的“内在价值”,远比成为一个鸟类学家难得多。
依靠均值回归预测未来是十分危险的,因为均值本身就变化不定。
揭露交易本质,奋斗财富自由。
更多精彩(金融、交易、股票、技术分析…)内容欢迎关注知道日报作者/公众号:超简交易
5. 为什么说正态分布在经济领域应用广泛
正态分布在经济领域的广泛应用:
1.财务会计研究领域
随着金融市场和现代企业制度的建立,财务会计向企业外部提供的财务信息倍受各利益关系人关注,而“财务会计信息有没有用”这样一个挑战性的问题出现了。所以早期的实证会计研究主要是从有效市场假设(EMH)和资本资产定价模型(CAPM)出发,检验财务会计数据与其他经济指标(特别是股价)的关系,如果财务会计指标(特别是会计收益指标)与股票价格相关,则说明会计信息的披露对证券市场的资源配置功能有效。后来这一结论被实证研究所证实,这有效地驳斥了“会计无用论”,从而奠定了实证会计研究的地位。近年来,会计政策选择成为实证会计研究的重心,以解释和预测企业“为什么会选择这种会计政策,而不采取那种会计政策”。例如:会计政策选择与企业规模、地区分布、资本结构、分红计划。债务契约的关系;企业的外部利益关系人对会计信息反应的研究等,如果将上述问题给予抽象,它们都涉及“变量间的相互关系”这样一个可以归结为数学的问题。所以,针对上述问题,在研究随时间变化、具有随机性而又前后相互关联的动态数据时,用到时间序列分析,它包括建立时间序列模型(ARIMA模型)、参数估计及谱估计等理论与方法。在讨论多元变量之间是否存在线性相关时,运用多元线性回归模型、典型相关分析和残差检验。由于正态分布在会计数据中广泛存在,例如,以任一会计科目作为总体,则不同时期该科目数额特别巨大和特别小(如为零)的比较少,则可以视之符合正态分布等,所以与正态分布相关的检验方法被大量使用:检验母体均值与原假设均值是否具有显著差异的U一检验,检验两个母体均值是否相等的T一检验,检验母体的方差与原假设方差是否具有显著差异的X2一检验,检验两个正态母体方差是否相等的F一检验。对不确定的母体分布采用非参数统计方法,如非参数检验。国外实证研究证实股票价格波动具有马尔可夫性,即在有效的资本市场中现在的股票价格已反映了以往和现在的全部经济信息,以前的股价行料对将来的股价波动不再具有信息价值,“将来”只与“现在”有关,而与“过去”无关。解决这方面问题的模型有:回归一马尔可夫模型、随机游动模型。
2.理财、管理会计研究领域
现代理财论,总的说来是围绕估价问题而展开的,这里所说的估价,既包括对个别“资本资产”的估价,也包括对企业总体价值的估价。如探讨投资风险和投资报酬的投资组合理论(Portfolia Theory),后来该理论又发展为资本资产定价模型(CAPM),套利定价理论(Arbitrage Pricing Theroy)、探讨资本结构与企业总价值关系的资本结构理论(Capital Structure Theory)、MM(Modigliani, Miller)理论、米勒模型(Miler Model)等。其中广泛应用了微积分、线性代数及概率论与数理统计。针对创新金融工具的估价模式——期权定价模型则广泛地应用了偏微分方程、随机微分方程及倒向随机微分方程等较为先进、复杂的数学理论与方法。
管理会计主要是利用信息来预测前景,参与决策。筹划未来,控制和评价经济活动等,保证以较少的劳动消耗和资金占用,取得较好的经济效益。管理会计应用的数学方法也相当广泛,例如预测成本和销售额时采用回归分析,评价企业财务状况、投资效益时采用层次分析法,预测经营状况是采用具有吸收状态(企业破产)的马尔可夫链。另外还有“经济定货量”模型、“经济生产量”模型、敏感分析、弹性分析等,则是应用微分学解决经济问题的一些典范。管理会计中许多问题可以归结为:数学分析中的极值问题;数学规划中一定约束条件下的目标函数的最值问题;马尔可夫相关理论问题;在约束条件和目标函数不能用线性方程或线性函数表示时的非线性规划问题;在解决多阶段决策问题时的动态规划问题;解决如何经济、合理地设置服务设施,从而以最低成本最大地满足顾客需要问题时的排队论问题,如人力资源选择,机器设备选购等;导源于宏观经济管理并在微观经济管理中也有广泛地应用的投入——产出分析问题,例如,用于多阶段生产条件下生产与成本计划的制定。
3.审计研究领域
审计主要是通过对财务会计信息的鉴证,以增强信息使用者对财务会计信息信任程度。在审计中最常用的数学方法是抽样技术。随着统计科学和企业规模的不断发展,许多会计公司将统计抽样理论与审计相结合,设计出了审计抽样技术。对受审单位的内部控制制度有效性进行符合性测试时,采用属性抽样,如连续性抽样,发现抽样。在实质性测试中采用变量抽样,如分层随机抽样及累计概率比例抽样法(PPS),这对于减少审计风险和成本,提高审计工作效率和效果意义重大,因为严格遵循随机原则抽取样本,根据总体容量、误差率、精确度、可信水平等因素综合分析得到样本容量,其分布规律更加接近于审计总体的分布规律。另外,在预测突发事件或不确定性问题时,历史数据或既定的模型并不能完全反映它们,在这种情况下还要结合专家的专业判断、经验进行预测,也就是说,这一步的后验分布又是下一步先验分布的基础,不断对模型进行修正使之“动态化”,以提高预测精度。近年来,判别分析模型和聚类分析模型在国外也开始引入审计研究领域。对于定性资料的统计分析方面,Logit模型和probit模型被广泛应用,例如用于预测注册会计师签署审计意见类型等。
值得注意的是,当人们寻求用定量方法处理复杂经济问题时,容易注重于数学模型的逻辑处理,而忽视数学模型微妙的经济含义或解释,实际上,这样的数学模型看来理论性很强,其实不免牵强附会,从而脱离实际。与其如此,不如从建模型一开始就老实承认数学方法的不足,而求助于经验判断,将定性的方法与定量的方法相结合,最后定量。
6. 正态分布论有什么重要意义
正态分布最初由棣莫弗研究二项式时推导得出,后来高斯又从另一个方面导出了正态分布的表达式,研究了正态分布的一系列性质并将其应用于天文学研究,因此正态分布通常又被叫做高斯分布。10元币值的德国马克上印有高斯的头像和正态分布曲线,高斯是举世闻名的大数学家,其对数学的贡献数不胜数,但德国人却唯独将正态分布挑出来印在马克上,足以说明在德国人乃至整个西方数学界,高斯最大的贡献不是别的,正是正态分布。正态分布英文名称Normal Distribution,直译意思是"一般分布",表示这个分布具有一般性,这是因为不论是自然界还是人类社会,绝大多数随机现象都服从正态分布,例如人的身高和体重分布、学生的成绩分布、股票组合的收益率分布、随机误差的分布、产品质量分布等都服从正态分布,另一方面,概率论中的其他分布如Possion分布、t分布、F分布等多由正态分布推导而出,在一定的条件下,所有其他的分布都可用正态分布来近似,正态分布在概率论中具有无可置疑的基础性地位。正态分布是自然科学与行为科学中的定量现象的一个方便模型。各种各样的心理学测试分数和物理现象比如光子计数都被发现近似地服从正态分布。尽管这些现象的根本原因经常是未知的, 理论上可以证明如果把许多小作用加起来看做一个变量,那么这个变量服从正态分布(在R.N.Bracewell的Fourier transform and its application中可以找到一种简单的证明)。
7. 股票收益率服从正态分布,这种假设合理吗
其实也有点道理,里大盘越近,追踪大盘越紧的收益率越高!希望能够认可。
8. 为什么假设股票价格服从正态分布是不现实的
股票价格多半不是自然形成,而是人为操纵的成份比较大,尤其受政策影响非常明显 。
9. 正太分布问题
正态分布,不是正太分布
生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;
一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。
个人资产受限较多,如国家政策,个人能力,社会环境等,人为因素太大,一般不遵循正态分布