实证投资定价股票横截面收益
A. 证券投资收益率的计算公式
1,股票投资收益的计算一般与银行的存款、理财计算差不多,都是按季度、年来计算的,而不仅仅是按当天股票波动来计算的。
2,股票投资收益率公式:投资利润率=年平均利润总额/投资总额*100%,其中年平均利润总额=年均产品收入-年均总成本-年均销售税金及附加,比如,小王,用100万炒股,一年下来,平均利润为20万,那么,他的投资利率=20/100*100%=20%。
拓展资料:
1:不贴现法: 收益率=(持收期间股息红利收入+证券卖出价-证券买入价)/证券买入价2:贴现法: 收益率=(持收期间股息红利收入+证券卖出价-证券买入价)*以必要报酬率计算的复利现值系数)/证券买入价以上方法均考虑为一次分红 。
2,投资收益率的优点是:指标的经济意义明确、直观,计算简便,在一定程度上反映了投资效果的优劣,可适用于各种投资规模。
3,缺点是:没有考虑资金时间价值因素,忽视了资金具有时间价值的重要性;指标计算的主观随意性太强,换句话说,就是正常生产年份的选择比较困难,如何确定有一定的不确定性和人为因素; 不能正确反映建设期长短及投资方式不同和回收额的有无对项目的影响,分子、分母计算口径的可比性较差,无法直接利用净流量信息。只有投资收益率指标大于或等于无风险投资收益率的投资项目才具有财务可行性。因此,以投资收益率指标作为主要的决策依据不太可靠。
4,股票年收益率计算公式? 股票年收益率计算公式? 2个回答325阅读 半夏锦年秋时染 2021-09-25 股票收益是指收益占投资的比例,一般以百分比表示。其计算公式为:收益率=(股息+卖出价格-买进价格)/买进价格×100%,比如一位获得收入收益的投资者,花8000元买进1000股某公司股票,一年中分得股息800元(每股0.8元),则:收益率=(800+0-0)/8000×100%=10%, 又如一位获得资本得利的投资者,一年中经过多过进,卖出,买进共30000元,卖出共45000元,则: 收益率=(0+45000-30000)/30000×100%=50%
5,如某位投资者系收入收益与资本得利兼得者,他花6000元买进某公司股票1000股,一年内分得股息400元(每股0.4元),一年后以每股8.5元卖出,共卖得8500元,则:收益率=(400+8500-6000)/6000×100%=48%, 任何一项投资,投资者最为关心的就是收益率,收益率越高获利越多,收益率越低获利越少。投资者正是通过收益率的对比,来选择最有利的投资方式的。
B. 股票投资收益率的计算公式
股票投资收益的计算一般与银行的存款、理财计算差不多,都是按季度、年来计算的,而不仅仅是按当天股票波动来计算的。
股票投资收益率公式:投资利润率=年平均利润总额/投资总额*100%,
其中年平均利润总额=年均产品收入-年均总成本-年均销售税金及附加,
比如,小王,用100万炒股,一年下来,平均利润为20万,那么,他的投资利率=20/100*100%=20%。
风险揭示:本信息不构成任何投资建议,投资者不应以该等信息取代其独立判断或仅根据该等信息作出决策,不构成任何买卖操作,不保证任何收益。如自行操作,请注意仓位控制和风险控制。
拓展资料:
影响股票涨跌的最直接因素是供求关系,股票涨跌与其它的商品一样受到供求关系的影响,其原理是一样的。
下面分3个方面进行阐述;
1、一般情况下,影响股票价格变动的最主要因素是股票的供求关系。在股票市场上,当某种(支)股票供不应求时,其股票价格就可能上涨到价值以上;而当种(支)股票供过于求时,其股票价格就会下降到价值以下。同时,价格的变化会反过来调整和改变市场的供求关系,使得价格不断围绕着价值上下波动。
2、股票在交易市场上作为交易对象,同商品一样,有自己的市场行情和市场价格。由于股票价格要受到诸如公司经营状况、供求关系、银行利率、大众心理等多种因素的影响,其波动有很大的不确定性。
3、外界的政策影响对股票价格也有波动,因外界的政策影响对某种(支)股票的方向有调控的作用
股票的交易时间:星期一至星期五上午9:30至11:30,下午13:00至15:00;
休息日:周六、周日和上证所公告的休市日不交易。(一般为五一、十一、春节、元旦、清明、端午、中秋等国家法定节假日);
上午9:15开始,投资人就可以下单,委托价格限于前一个营业日收盘价的加减百分之十,即在当日的涨跌停板之间;
9:25前委托的单子,在上午9:25时撮合,得出的价格便是所谓“开盘价”。9:25到9:30之间委托的单子,在9:30才开始处理。如果你委托的价格无法在当个交易日成交的话,隔一个交易日则必须重新挂单。
根据规定,卖出股票资金由银证转账转入银行,实行的是T+1制度,简单来说就是当天成功卖出股票后要第二天才能转入银行,进而取现。虽然将资金转到银行卡通常需要在下一个交易日,但也会有例外。如果周一、周二、周三、周四卖出股票,可在第二天转出至银行账号。如果是周五卖出,则需要下周一才能转出至银行账号。
另外,关于资金到账时间还需要注意一点,从证券资金账户转至银行账号叫银证转账,通常是在工作日的早9点到下午4点可操作,其他时间操作无效。如果大家计划将证券账户资金转出到银行卡,必须在可操作时间内进行。
C. capm实证分析里单个股票的月收益率是怎么算的
您好
月收益率和30日收益率是两种计算方式:
月收益率——每个自然月的第一个交易日和最后一个交易日的单位净值变化值与第一个交易日的单位净值的比。
公式:(月最后一个交易日的单位净值 - 月第一个交易日的单位净值)/月第一个交易日的单位净值 = 月收益率
30日收益率——今天和之前第29个交易日的单位净值变化值与之前第29个交易日的单位净值的比。
公式:(今天的单位净值 - 之前第29个交易日的单位净值)/之前第29个交易日的单位净值 = 30日收益率
下面是我原创的网络经验一共十六期,您的所有问题都在里面了。
http://jingyan..com/article/066074d67e1651c3c21cb0cd.html
http://jingyan..com/magazine/4329
http://jingyan..com/magazine/5582
http://jingyan..com/magazine/6277
http://jingyan..com/magazine/7499
http://jingyan..com/magazine/7440
您好
D. 投资学作业:从股票定价模型来分析香港金融危机 求解!!!
一、资本资产定价模型的理论背景
威廉•夏普建立了均衡的证券定价理论,即著名的资本资产定价模型(CAPM):(1)其中,E(Ri)为股票i的预期收益率,Rf为无风险利率,E(RM)为市场组合的预期收益率,,即系统风险系数,是市场组合收益率的方差,βi表示股票i收益率变化对市场组合收益率变动的敏感度,用βi系数来衡量该股票的系统风险大小。CAPM说明:在证券市场上,非系统风险可以通过多元化投资加以消除,对定价唯一起作用的是该证券的β系数。因此,对CAPM的检验就是验证β系数是否具有对收益的完全解释能力。
二、CAPM在国内外的检验
国外在1970以后就开始了对CAPM的检验和β系数的稳定性研究,早期的检验结果表明,西方成熟资本市场中股票定价基本符合CAPM。但1980年以后,出现了大量负面的验证结果。从1990年开始,国内一些学者对CAPM也陆续做了大量研究。陈浪南、屈文洲(2000)对上海A股市场对资本资产定价模型进行实证检验,根据股市中的三种市场格局(上升、下跌和横盘)划分了若干的时间段得出不同β值的进行分析,得出的β值与股票收益率的相关性较不稳定,说明上海股票市场存在较大的投机性。阮涛、林少宫(2000)说明了上海股票市场不符合CAPM,基于CAPM模型对中国现阶段的股票市场的分析和应用缺乏有效性依据。许涤龙,张钰(2005)实证结果表明在沪市股票的收益与其β系数存在着显著的正相关线性关系,但无风险收益率却是负的,这说明上海股票市场具有明显的投机特征,是一个不够成熟的股市。
三、数据说明和处理
本文选择上海证券交易所上市的上证180指数成分股,选择2009年1月9日到2010年12月22日期间的周数据,共有101个周数据,剔除在上述期间数据缺失的股票,样本共包含152只股票,本文选用上证综合指数来替代市场组合收益,所用数据都已进行除权、除息复权处理,本文数据来源于Wind资讯。个股用周收盘价来计算它们的周收益率,计算公式如下:其中Rit是第i只股票在t时刻的收益率;pit是第i只股票在t时刻的收盘价。上证综合指数的收益率计算同上,用Rmt来表示周收益率。对于无风险收益率的确定,本文使用一年期的定期存款利率来表示无风险收益率,折算成周收益率为:Rf=0.0455%。
四、CAPM实证和结果
本文在检验中用到的基本时间序列方程如下:(2)对于横截面的CAPM检验,采用下面的模型:(3)(4)其中是第i只股票平均收益率(样本均值来代替),βi是第i只股票的β值,在(4)的回归中βi由模型(3)中的得到的回归系数bi来替代。将回归结果与CAPM模型(1)进行比较,检验CAPM在上海资本市场是否成立:(1)资产的风险和收益之间是否存在线性关系。如果模型(4)中参数其估计值不显著异于零,则可认为资产的风险和收益之间仅存在线性关系。(2)资产的风险和收益是否正相关。如果参数γ1其估计值显著异大于零,则可以认为资产的风险和收益是正相关的。此外,其估计值理论上应该等于E(RM)-Rf,即市场的超额收益率。(3)参数γ0其估计值不显著异于Rf。
152只股票的周收益率分别对上综指的周收益率进行时间序列回归,得到152只股票的bi值。然后以152只股票的周收益率为因变量,各个股票回归出来的值为自变量对模型(3)进行回归,其结果为表1结果可以发现βi值在5%显著性水平下显著,而常数项γ0仅在10%的显著性水平下显著。即收益率与系统风险(β值)存在的线性显著性较强。下面来检验回归出来的γ0和无风险收益率是否有显著差异。γ0=0.002945,Rf=0.0455%,其检验的t值为此结果表明γ0和Rf在显著性水平5.97%下有显著区别,这与CAPM不吻合。下面来检验斜率系数是否显著不同于E(RM)-Rf。由表1知γ1=0.005036,其检验的t值为在5%的显著性水平下,γ1和E(RM)-Rf没有显著区别,这和CAPM相符。
为了进一步检验收益率与系统风险(β值)存在的非线性关系,对模型(4)检验得到的结果如下:根据表2的结果可以发现β值在5%显著性水平下不显著,而β2值在5%显著性水平下显著,这可以发现上海股票市场的除了系统风险的影响之外,与收益率风险的非线性关系即非系统风险对上海股票市场的收益率影响也较大。从表1和表2的结果可以看出,其中γ0是正数,这个与CAPM相吻合,但是以往的大部分文献中得出常数项为负值,而此处的结果得出γ0较显著的大于Rf,这是由于金融危机后,2009年与2010年的利率维持在较低水平,而上证A股指数从金融危机后较低的点位正在上升的过程中。
五、总结
根据上述CAPM的有效性检验,可以得出以下结论:(1)上海资本市场股票组合的平均超额收益率与其系统风险之间存在正相关关系,并且同时与非系统风险之间存在显著的线性关系。说明上海股票市场的股票定价不仅仅受系统风险的影响,而且受非系统风险的影响。(2)模型(3)中的斜率系数与平均超额收益率没有显著区别,常数估计值较显著大于无风险利率,与之前的大部分文献得出常数项大部分为负值不同。这由于金融危机后的这个特殊时期的货币政策和股市走势有关,同时也反映出上海股票市场正在逐步迈向成熟的过程之中。
E. 请问金融学论文里的股票横截面收益是什么
文人的东西 不值一提
股市无情感 不靠卖嘴 不靠忽悠 因为那些都没用
有的只是千奇百怪的撕杀 任何有本事在股市挣钱的人都不愿从事其他行业 也就是说任何能听到看到的需要报酬的东西都没用
F. 股票投资收益怎么算
股票投资的收益是由“收入收益”和“资本利得”两部分构成的。收入收益是指股票投资者以股东身份,按照持股的份额,在公司盈利分配中得到的股息和红利的收益。资本利得是指投资者在股票价格的变化中所得到的收益,即将股票低价买进,高价卖出所得到的差价收益。
G. 什么是股票的横截面收益
横截面收益率指的是在经典资产定价模型中,在横截面上线性确定的一个与资产风险匹配的资产收益率。
以我国上市公司2003-2008年的数据为样本,实证检验了终极控制特征、资本投资对股票横截面收益的影响。研究结果发现:
(1)上市公司终极控制权与现金流权分离并没有显著影响与中小股东利益直接相关的股票横截面收益;
(2)上市公司预期投资显著降低了股票横截面收益,说明市场普遍认为投资活动损害了公司价值;
(3)终极控制权与现金流权分离通过预期资本投资对公司价值产生了负面影响,而当期资本投资的变化一定程度地提高了公司的价值。
H. 股票投资收益怎么计算
股票投资收益的计算
1、股利收益率
股利收益率是指股份公司以现金形式派发的股息与股票购买价格的比率。股利收益率=每年现金股息 股票买入价×100%
2.、持有期收益率
持有期收益率是指投资者在持有股票期间的股息和资本利得与股票购买价格的比率。它是投资者最关心的指标,但若要将它与债券收益率、银行利率等其他金融资产的收益率比较,要注意时间的可比性,即要将其转化为年收益率。 持有期收益率=现金股息+股票卖出价-股票买入价 股票买入价
I. 股票投资实际收益率的计算:一普通股每年支付一次红利,现刚支付完每股0.5元的红利,预期红利在之后第一年
市盈率=股价/每股收益不过这个东西没用,如果是短线操作的话,这个没有什么也就是说,投资100元,一年的收益为2.25元,按市盈率公式计算: 100/2.
J. 横截面股票价格是什么意思
资本资产定价模式(CAPM)在上海股市的实证检验
资产定价问题是近几十年来西方金融理论中发展最快的一个领域。1952年,亨利·马柯维茨发展了资产组合理论......
一、资本资产定价模式(CAPM)的理论与实证:综述
(一)理论基础
资产定价问题是近几十年来西方金融理论中发展最快的一个领域。1952年,亨利·马柯维茨发展了资产组合理论,导致了现代资产定价理论的形成。它把投资者投资选择的问题系统阐述为不确定性条件下投资者效用最大化的问题。威廉·夏普将这一模型进行了简化并提出了资产定价的均衡模型—CAPM。作为第一个不确定性条件下的资产定价的均衡模型,CAPM具有重大的历史意义,它导致了西方金融理论的一场革命。
由于股票等资本资产未来收益的不确定性,CAPM的实质是讨论资本风险与收益的关系。CAPM模型十分简明的表达这一关系,即:高风险伴随着高收益。在一些假设条件的基础上,可导出如下模型:
E(Rj)-Rf=(Rm-Rf)bj
其中: E(Rj )为股票的期望收益率。
Rf 为无风险收益率,投资者能以这个利率进行无风险的借贷。
E(Rm )为市场组合的期望收益率。
bj =sjm/s2m,是股票j 的收益率对市场组合收益率的回归方程的斜率,常被称为"b系数"。其中s2m代表市场组合收益率的方差,sjm 代表股票j的收益率与市场组合收益率的协方差。
从上式可以看出,一种股票的收益与其β系数是成正比例关系的。β系数是某种证券的收益的协方差与市场组合收益的方差的比率,可看作股票收益变动对市场组合收益变动的敏感度。通过对β进行分析,可以得出结论:在风险资产的定价中,那些只影响该证券的方差而不影响该股票与股票市场组合的协方差的因素在定价中不起作用,对定价唯一起作用的是该股票的β系数。由于收益的方差是风险大小的量度,可以说:与市场风险不相关的单个风险,在股票的定价中不起作用,起作用的是有规律的市场风险,这是CAPM的中心思想。
对此可以用投资分散化原理来解释。在一个大规模的最优组合中,不规则的影响单个证券方差的非系统性风险由于组合而被分散掉了,剩下的是有规则的系统性风险,这种风险不能由分散化而消除。由于系统性风险不能由分散化而消除,必须伴随有相应的收益来吸引投资者投资。非系统性风险,由于可以分散掉,则在定价中不起作用。
(二)实证检验的一般方法
对CAPM的实证检验一般采用历史数据来进行,经常用到的模型为:
其中: 为其它因素影响的度量
对此模型可以进行横截面上或时间序列上的检验。
检验此模型时,首先要估计 系数。通常采用的方法是对单个股票或股票组合的收益率 与市场指数的收益率 进行时间序列的回归,模型如下:
这个回归方程通常被称为"一次回归"方程。
确定了 系数之后,就可以作为检验的输入变量对单个股票或组合的β系数与收益再进行一次回归,并进行相应的检验。一般采用横截面的数据,回归方程如下:
这个方程通常被称作"二次回归"方程。
在验证风险与收益的关系时,通常关心的是实际的回归方程与理论的方程的相合程度。回归方程应有以下几个特点:
(1) 回归直线的斜率为正值,即 ,表明股票或股票组合的收益率随系统风险的增大而上升。
(2) 在 和收益率之间有线性的关系,系统风险在股票定价中起决定作用,而非系统性风险则不起决定作用。
(3) 回归方程的截矩 应等于无风险利率 ,回归方程的斜率 应等于市场风险贴水 。
(三)西方学者对CAPM的检验
从本世纪七十年代以来,西方学者对CAPM进行了大量的实证检验。这些检验大体可以分为三类:
1.风险与收益的关系的检验
由美国学者夏普(Sharpe)的研究是此类检验的第一例。他选择了美国34个共同基金作为样本,计算了各基金在1954年到1963年之间的年平均收益率与收益率的标准差,并对基金的年收益率与收益率的标准差进行了回归,他的主要结论是:
a、在1954—1963年间,美国股票市场的收益率超过了无风险的收益率。
b、 基金的平均收益与其收益的标准差之间的相关系数大于0.8。
c、风险与收益的关系是近似线形的。
2.时间序列的CAPM的检验
时间序列的CAPM检验最著名的研究是Black,Jensen与Scholes在1972年做的,他们的研究简称为BJS方法。BJS为了防止β的估计偏差,采用了指示变量的方法,成为时间序列CAPM检验的标准模式,具体如下:
a、利用第一期的数据计算出股票的β系数。
b、 根据计算出的第一期的个股β系数划分股票组合,划分的标准是β系数的大小。这样从高到低系数划分为10个组合。
c、采用第二期的数据,对组合的收益与市场收益进行回归,估计组合的β系数。
d、 将第二期估计出的组合β值,作为第三期数据的输入变量,利用下式进行时间序列回归。并对组合的αp进行t检验。
其中:Rft为第t期的无风险收益率
Rmt为市场指数组合第t期的收益率
βp指估计的组合β系数
ept为回归的残差
BJS对1931—1965年间美国纽约证券交易所所有上市公司的股票进行了研究,发现实际的回归结果与理论并不完全相同。BJS得出的实际的风险与收益关系比CAPM 模型预测的斜率要小,同时表明实际的αp在β值大时小于零,而在β值小时大于零。这意味着低风险的股票获得了理论预期的收益,而高风险股票获得低于理论预测的收益。
3.横截面的CAPM的检验
横截面的CAPM检验区别于时间序列检验的特点在于它采用了横截面的数据进行分析,最著名的研究是Fama和Macbeth(FM)在1973年做的,他们所采用的基本方法如下:
a、根据前五年的数据估计股票的β值。
b、 按估计的β值大小构造20个组合。
c、计算股票组合在1935年—1968年间402个月的收益率。
d、 按下面的模型进行回归分析,每月进行一次,共402个方程。
Rp=g0+g1bp+g2bp2+g3sep+ep
这里:Rp为组合的月收益率、
βp为估计的组合β值
bp2为估计的组合β值的平方
sep为估计βp值的一次回归方程的残差的标准差
g0、g1、g2、g3为估计的系数,每个系数共402个估计值
e、对四个系数g0、g1、g2、g3进行t检验
FM结果表明:
①g1的均值为正值,在95%的置信度下可以认为不为零,表明收益与β值成正向关系
②g2、g3在95%的置信度下值为零,表明其他非系统性风险在股票收益的定价中不起主要作用。
1976年Richard·Roll对当时的实证检验提出了质疑,他认为:由于无法证明市场指数组合是有效市场组合,因而无法对CAPM模型进行检验。正是由于罗尔的批评才使CAPM的检验由单纯的收益与系统性风险的关系的检验转向多变量的检验,并成为近期CAPM检验的主流。最近20年对CAPM的检验的焦点不是 ,而是用来解释收益的其它非系统性风险变量,这些变量往往与公司的会计数据相关,如公司的股本大小,公司的收益等等。这些检验结果大都表明:CAPM模型与实际并不完全相符,存在着其他的因素在股票的定价中起作用。
(四)我国学者对风险-收益关系的检验
我国学术界引进CAPM的概念的时间并不长,一些学者对上海股市的风险与收益的关系做了一些定量的分析,但至今仍没有做过系统的检验。他们的研究存在着一些缺陷,主要有以下几点:
1. 股票的样本太少,不代表市场总体,无法得出市场上风险与收益的实际关系。
2. 在两次回归中,同时选用同一时期的数据进行 值的估计和对CAPM模型中线性关系的验证。
3. 在确定收益率时并没有考虑分红,送配带来的影响并做相应调整,导致收益和风险的估计的偏差,严重影响分析的准确性。
4. 在回归过程中,没有选用组合的构造,而是采用个股的回归易导致, 系数的不稳定性。
二、上海股市CAPM模型的研究方法
(一)研究方法
应用时间序列与横截面的最小二乘法的线性回归的方法,构造相应的模型,并进行统计检验分析。时间序列的线性回归主要应用于股票β值的估计。而CAPM的检验则采用横截面回归的方法。
(二)数据选取
1.时间段的确定
上海股市是一个新兴的股市,其历史并不十分长,从1990年12月19日开市至今,不过短短八年的时间。在这样短的时间内,要对股票的收益与风险问题进行研究,首先碰到的是数据数量不够充分的问题。一般来说对CAPM的检验应当选取较长历史时间内的数据,这样检验才具有可靠性。但由于上海股市的历史的限制,无法做到这一点。因此,首先确定这八年的数据用做检验。
但在这八年中,也不是所有的数据均可用于分析。CAPM的前提要求市场是一个有效市场:要求股票的价格应在时间上线性无关。在第一章中通过对上海股市收益率的相关性研究,发现93年之前的数据中,股价的相关性较大,会直接影响到检验的精确性。因此,在本研究中,选取1993年1月至1998年12月作为研究的时间段。从股市的实际来看,1992年下半年,上海股市才取消涨停板制度,放开股价限制。93年也是股市初步规范化的开始。所以选取这个时间点用于研究的理由是充分的。
2.市场指数的选择
目前在上海股市中有上证指数,A股指数,B股指数及各分类指数,本文选择上证综合指数作为市场组合指数,并用上证综合指数的收益率代表市场组合。上证综合指数是一种价值加权指数,符合CAPM市场组合构造的要求。
3.股票数据的选取
这里用上海证券交易所(SSE)截止到1998年12月上市的425家A股股票的每日收盘价、成交量、成交金额等数据用于研究。这里遇到的一个问题是个别股票在个别交易日内停牌,为了处理的方便,本文中将这些天该股票的当日收盘价与前一天的收盘价相同。
三、上海股市风险-收益关系的实证检验
(一)股票贝塔系数的估计
中国股票市场共有8年的交易数据,应采用3年以上的数据用于估计单个股票的 系数,才能保证 具有稳定性。但是课题组在实践中通过比较发现由于中国股票市场作为一个新兴的市场,无论是市场结构还是市场规模都还有待于进一步的发展,同时各种股票关于市场的稳定性都不是很高,股市中还存在很大的时变风险,因此各种股票的 系数随着时间的推移其变化将会很大。所以只用上一年的数据估计下一年的 系数时, 系数将更具有灵敏性,因为了使检验的结果更理想,均采用上一年的数据估计下一年的 系数。估计单个股票的 系数采用单指数模型,如下:
其中: : 表示股票i在t时间的收益率
: 表示上证指数在t时间的收益率
:为估计的系数
:为回归的残差。
进行一元线性回归,得出 系数的估计值 ,表示该种股票的系统性风险的测度。
(二)股票风险的估计
股票的总风险,可以用该种股票收益率的标准差来表示,可以用下式来估计总风险
其中:N为样本数量, 为 的均值。
非系统风险,可用估计 的回归方程中的残差 的标准差来表示,用 表示股票i的非系统性风险,可用下式求出:
其中: 为一次回归方程的残差
为 的均值
(三)组合的构造与收益率计算
对CAPM的总体性检验是检验风险与收益的关系,由于单个股票的非系统性风险较大,用于收益和风险的关系的检验易产生偏差。因此,通常构造股票组合来分散掉大部分的非系统性风险后进行检验。构造组合时可采用不同的标准,如按个股b系数的大小,股票的股本大小等等,本文按个股的b系数大小进行分组构造组合。将所有股票按b系数的大小划分为15个股票组合,第一个股票组合包含b系数最小的一组股票,依次类推,最后一个组合包含b数子最大的一组股票。组合中股票的b系数大的组合被称为"高b系数组合",反之则称为"低b系数组合"。
构造出组合后就可以计算出组合的收益率了,并估计组合的b系数用于检验。这样做的一个缺点是用同一历史时期的数据划分组合,并用于检验,会产生组合b值估计的偏差,高b系数组合的b系数可能会被高估,低b系数组合的b系数可能被低估,解决此问题的方法是应用Black,Jenson与Scholes研究组合模型时的方法(下称BJS方法),即如下四步:
(1)利用第一期的数据计算股票的b系数。
(2)利用第一期的b系数大小划分组合
(3)采用第一期的数据,对组合的收益与市场收益率进行回归,估计组合的b系数
(4)将第一期估计出的组合b值作为自变量,以第二期的组合周平均收益率进行回归检验。
在计算组合的平均周收益率时,我们假设每个组合中的十只股票进行等额投资,这样对平均周收益率 只需对十只股票的收益率进行简单平均即可。由于股票的系统风险测度,即真实的贝塔系数无法知道,只能通过市场模型加以估计。为了使估计的贝塔系数更加灵敏,本研究用上一年的数据估计贝塔系数,下一年的收益率检验模型。
(四)组合贝塔系数和风险的确定
对组合的周收益率求标准方差,我们可以得到组合的总风险sp
组合的b值的估计,采用下面的时间序列的市场模型:
Rpt =ap+bpRmp+ept
其中:Rpt表示t时期投资组合的收益率
:为估计的系数
Rmt表示t期的市场组合收益率
ept为回归的残差
对组合的每周收益率与市场指数收益率回归残差分别求标准差即可以得到组合sep值。
表1:组合周收益率回归的b值与风险(1997.01.01~1997.12.31)
组合 组合b值 组合а值 相关系数平方 总风险 非系统风险
1 0.781 0.001 0.888 0.063 0.021
2 0.902 0.000 0.943 0.071 0.017
3 0.968 0.000 0.934 0.076 0.02
4 0.989 0.000 0.902 0.079 0.025
5 1 0.000 0.945 0.078 0.018
6 1.02 0.000 0.958 0.079 0.016
7 1.04 0.002 0.935 0.082 0.021
8 1.06 0.000 0.925 0.084 0.023
9 1.08 0.000 0.938 0.085 0.021
10 1.1 0.000 0.951 0.086 0.019
11 1.11 0.000 0.951 0.087 0.019
12 1.12 0.000 0.928 0.089 0.024
13 1.13 0.000 0.937 0.089 0.022
14 1.16 0.000 0.912 0.092 0.027
15 1.17 0.000 0.922 0.092 0.026
(五)组合平均收益率的确定
对组合按前面的构造方法,用第98年的周收益率求其算术平均收益率。
表2:组合的平均收益率(1998.1.1-1998.12.31)
组合 组合b 平均周收益率
1 0.781 0.0031
2 0.902 -0.0004
3 0.968 0.0048
4 0.989 0.0052
5 1 0.0005
6 1.02 -0.002
7 1.04 0.0038
8 1.06 0.003
9 1.08 0.0016
10 1.1 0.0026
11 1.11 0.005
12 1.12 0.0065
13 1.13 0.0044
14 1.16 0.0067
15 1.17 0.0074
(六)风险与收益关系检验
以97年的组合收益率估计b,以98年的组合收益率求周平均收益率。对15组组合得到的周平均收益率与各组合b系数按如下模型进行回归检验:
Rpj=g0+g1bpj
其中 : Rpj 是组合 j的98年平均周收益率
bpj 是组合j的b系数
g0,g1为估计参数
按照CAPM应有假设:
1.g0的估计应为Rf的均值,且大于零,表明存在无风险收益率。
2.g1的估计值应为Rm-Rf>0,表明风险与收益率是正相关系,且市场风险升水大于零。
回归结果如下:
g0 g1 R2
均值 -0.0143 0.0170 0.4867
T值 -2.8078 3.5114
查表可知,在5%显著水平下回归系数g1显著不为0,即在上海股市中收益率与风险之间存在较好的线性相关关系。论文在实践检验初期,发现当以93年至97年的数据估计b,而用98年的周收益率检验与风险b关系时,回归得到的结论是5%显著水平下不能拒绝回归系数g1显著为0的假设。这些结果表明,在上海股市中系统性风险b与周收益率基本呈现正线性相关关系。同时,上海股市仍为不成熟证券市场,个股b十分不稳定,从相关系数来看,尚有其他的风险因素在股票的定价中起着不容忽视的作用。本文将在下面进行CAPM模型的修正检验。
四、CAPM的横截面检验
(一)模型的建立
对于横截面的CAPM检验,采用下面的模型:
Rp=g0+g1bp+g2bp2+g3sep+ep
该模型主要检验以下四个假设:
1,系统性风险与收益的关系是线性的,就是要检验回归系数E(g2)=0。
2,b是衡量证券组合中证券的风险的唯一测度,非系统性风险在股票的定价中不起作用,这意味着回归方程的系数E(g3)=0。
3,对于风险规避的投资者,高系统性风险带来高的期望回报率,也就是说:E(g1)=E(Rmt)—E(Rft)>0
4,对只有无风险利率才是系统风险为0的投资收益,要求E(g0)=Rf。
(二)检验的结果及启示
对CAPM模型的横截面的检验采用多元回归中的逐步回归分析法(stepwise),即在回归分析中首先从所有自变量选择一个自变量,使相关系数最大,再逐步假如新的自变量,同时删去可能变为不显著的自变量,并保证相关系数上升,最终保证结果中的所有自变量的系数均显著不为0,并且被排除在模型之外的自变量的系数均不显著。
表4:多元回归的stepwise法结果
g0 g1 R2
系数 -0.0143 0.0170 0.4867
T值 -2.8078 3.5114
从表中可以得出如下结论:
1.bp2项的系数的T检验结果并不显著,表明风险与收益之间并不存在非线性相关关系。
2.sep 项的系数的T检验结果并不显著,表明非系统风险在资产组合定价中并不起作用。
3.g0的估计值为负,即资金的时间价值为负,表明市场具有明显的投机特征。
五、影响收益的其他因素分析
(一)历史回顾
长期以来,Sharp,linter和Mossin分别提出的CAPM模型一直是学术界和投资者分析风险与收益之间关系的理论基石,尤其是在Black,Jensen,和Scholes(1972)以及 Fama 和MacBeth(1973)通过实证分析证明了1926-1968年间在纽约证券交易所上市的股票平均收益率与贝塔之间的正的相关关系以后。然而八十年代,Reinganum(1981)和Lakonishok ,Shapiro(1986)对后来的数据分析表明这种简单的线性关系不复存在。Roll对CAPM的批评文章发表之后,对CAPM的检验也转向对影响股票收益的其他风险因素的检验,并发现了许多不符合CAPM的结果。Fama和French(1992)更进一步指出,从四十年代以后,纽约股票市场股票的平均收益率与贝塔系数间不存在简单的正线性相关关系。他们通过对纽约股票市场1963年至1990年股票的月收益率分析发现存在如下的多因素相关关系:
R=1.77%-(0.11*ln(mv))+(0.35*ln(bv/mv))
其中:mv是公司股东权益的市场价值,bv是公司股东权益的账面价值。
从前一节我们对上海股票市场的检验结果可以看出,当选用的历史数据变化以后,上海股市中收益与系统性风险相关的显著程度并不如CAPM所预期的那样。罗尔对CAPM的解释同样适合于上海市场,即一方面我们无法证实市场指数就是有效组合,以我们分析的上海股票市场而言,上证指数远没有包括所有金融资产,比如投资者完全可以自由投资于债券市场和在深圳证券交易所上市的股票。另一方面,在实际分析中我们无法找到真正的贝塔(true beta)。为了找出上海股市中股票定价的其他因素,本文结合上海股票市场曾经出现炒作的"小盘股"、"绩优股"、"重组股"等现象,对公司的股本大小,公司的净资产收益率,市盈率等非系统因素对收益的影响进行了分析。具体方法是:论文首先对影响个股收益率的各因素进行逐年分析,然后构造组合,再对影响组合收益率的各因素进行分析,组合的构造方法与前相同。
(二)单股票的多因素检验及结果
检验方法是用历史数据计算b系数,再对b系数、前期总股本、前期流通股本、预期净资产收益率、预期PE比率对收益率的解释程度进行分析。例如在分析年所有股票收益率的决定因素时,采用93年股票的收益率计算贝塔系数,总股本为93年末的总股本,净资产收益率和市盈率根据94年的财务指标计算。由于股票在此之后4年交易期间,净资产收益率(ROE)和每股收益(EPS)尚未公布,因此净资产收益率和市盈率都称为预期净资产收益率和预期市盈率。具体模型如下:
Rj=g0+g1bj+g2Gj+g3ROEj+g4PEj+ej
其中 : Rj 是股票 j的第t期年平均周收益率
bj 是股票j的b系数,b系数由第(t-1)期历史数据算出
Gj 是股票j的第(t-1)期总股本对数值
ROEj是股票j的第t期净资产收益率
PEj 是股票j的第t期期末市盈率
STEPWISE多元回归发现94年各股票收益率与以上因素并无显著关系,其他各年的结果如下:
表5:95年个股收益率的STEPWISE多元回归结果
Rj=g0+g2Gj
R2 g0 g2
均值 T值 均值 T值
0.05 -0.013 -3.568 0.0011 2.958
表6:96年个股收益率的STEPWISE多元回归结果
Rj=g0+g2Gj+g3ROEj
R2 g0 g2 g3
均值 T值 均值 T值 均值 T值
0.171 -0.011 -1.93 0.002 2.845 0.024 5.249
表7:97年个股收益率的STEPWISE多元回归结果
Rj=g0+g2Gj
R2 g0 g2
均值 T值 均值 T值
0.099 0.0317 6.328 -0.0028 -5.325
表8:98年个股收益率的STEPWISE多元回归结果
Rj=g0+g1bj+g2Gj+g3ROEj
R2 g0 g1 g2 g3
均值 T值 均值 T值 均值 T值 均值 T值
0.195 0.0343 7.799 0.005 3.582 -0.003 -8.548 0.0013 0.0045
(三)组合的检验及结果
组合的构造方法与前面所描述的一致。对所有组合98年平均周收益率与组合的97年数据所计算出的贝塔系数、97年末平均总股本、98年平均净资产收益率、98年底平均市盈率进行回归分析,模型如下:
Rpj=g0+g1bpj+g2Gpj+g3ROEpj+g4PEpj+ej
其中 : Rpj 是组合 j的98年平均周收益率
bpj 是组合j的b系数
Gpj 是组合j的 97年总股本对数值
ROEpj 是组合j的98年净资产收益率
PEpj 是组合j的98年末市盈率
表9:98年组合收益率的STEPWISE多元回归结果
g0 g3 R2
均值 0.0425 -0.0039 0.593
T值 4.736 -4.355
(四)结果分析
对组合的收益率以及97年以来个股的收益率采用stepwise回归分析可以看出,公司的股本因素在上海股票市场的股票定价中起着显著的作用。股票的定价因素同西方成熟股市一样,存在规模效应(Size Effect),即小公司的股票容易取得高收益率。这个结论与中国股市的近几年价格波动实际特点相一致,其原因可以从以下三方面分析:首先,小公司股本扩张能力强。在我国股市中,投资人主要是希望公司股本扩张后带来的资产增值盈利。其次,小股本的股票便于机构投资者炒作。我国机构投资者的实力总体偏弱,截止98年年底,注册资本在5亿元以上的券商只有10多家。最后,小公司往往被市场认为是资产收购与兼并的目标。许多早期上市的公司,市场规模较小,在激烈的市场竞争中无行业垄断优势和规模经济效益,无法与大企业抗衡。而许多高科技企业或具有较强市场竞争力的企业迫切需要进入资本市场,将收购目标瞄准这些小规模上市公司实行低成本借壳上市。这三方面的因素都导致小股本公司的股票受到市场的青睐。因此在论文的检验结果中,无论是个股还是组合在历年的收益率中都是显著地与股本相关