当前位置:首页 » 股票投资 » 量化股票投资要管理多少资金

量化股票投资要管理多少资金

发布时间: 2021-11-02 10:09:46

A. 什么是量化投资

量化投资指的是一种投资方法,它是指通过数量化方式或计算机程序化发出买卖指令,以得到稳定收益为目标的交易方式。量化投资是一种定性思想的量化应用,它对大量的指标数据进行分析,得出一些有说服力的数据结论,然后通过计算机技术进行数学建模,并进行量化分析,从而得出一个比较契合实际的投资策略。
量化投资是指通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式。在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。从全球市场的参与主体来看,按照管理资产的规模,全球排名前四以及前六位中的五家资管机构,都是依靠计算机技术来开展投资决策,由量化及程序化交易所管理的资金规模在不断扩大。

B. 股票量化是什么意思

所谓量化交易,是指以先进的数学模型替代人为的主观判断,同时利用计算机技术从庞大的历史数据中海选出能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为,研究表明,板块、行业轮动在机构投资者的交易中最为获利的盈利模式是基于行业层面进行周期性和防御性的轮动配置,这也是机构投资者最普遍采用的策略。此外,周期性股票在扩张性货币政策时期表现较好,而在紧缩环境下则支持非周期性行业。行业收益差在扩张性政策和紧缩性政策下具有显著的差异。

拓展资料:
一、量化交易特点
1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
二、量化交易潜在风险
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。

C. 如何简单理解量化投资

1、定义:
量化投资是将投资理念及策略通过具体指标、参数的设计,体现到具体的模型中,让模型对市场进行不带任何情绪的跟踪
2、特点:
具有快速高效、客观理性、收益与风险平衡和个股与组合平衡等四大特点
3、具体运行
一、估值与选股

估值:对上市公司进行估值是公司基本面分析的重要方法,在“价值投资”的基本逻辑下,可以通过对公司的估值判断二级市场股票价格的扭曲程度,继而找出价值被低估或高估的股票,作为投资决策的参考。
二、资产配置

资产配置指资产类别选择、投资组合中各类资产的配置比例以及对这些混合资产进行实时管理。
三、基于行为金融学的投资策略

金业中的应用将主要集中在量化选股、资产配置、绩效评估与风险管理、行为金融等方面,而随着包括基金在内的机构投资者占比的不断提高、衍生品工具的日渐丰富(股指期货、融资融券等)以及量化投资技术的进步,基金管理人的投资策略将会越来越复杂,程序化交易(系统)也将有快速的发展。

D. 期货、股票投资需要多少钱资金少投有好处吗

这个钱没有限制的。主要看你是怎么想的了。如果先练习一下,期货、股票一般投资了2、3万就可以了。
但是期货个别品种的保证金比较高,比如黄金期货,一手要5万左右的保证金,如果超黄金期货最少也要准备个10多万。要不刚刚够一手的钱风险太大,容易爆仓。

E. 什麽是量化投资

量化投资,简单地说,就是利用数学、统计学、信息技术的数量化投资方法来管理投资组合。数量化投资的组合构建注重的是对宏观数据、市场行为、企业财务数据、交易数据进行分析,利用数据挖掘技术、统计技术、计算方法等处理数据,以得到最优的投资组合和投资机会。

目前,量化投资已经在全球范围得到投资人的广泛认可。在美国零售市场发行的主动型股票基金中,量化投资基金占据了16%的市场份额,而在机构投资市场,量化投资则获得了更多的关注,以巴克莱全球投资管理公司、道富环球投资管理公司和高盛国际资产管理公司为首的一大批以量化投资为核心竞争力的公司已经成为机构资产管理公司中的“巨无霸”。

所谓量化投资是基于大数据分析,以统计学的思维研究市场。这在机构投资中十分常见,也深受华尔街的金融家们偏爱。而微量网(wquant)正是通过互联网大数据技术,让
“神秘”的量化投资“平民化”。形象的来说,中小投资者可以像去购物一样,到微量网选择一个“智能大脑”,在这个大脑的帮助下,选择投资策略,从而让赚钱成为大概率事件。

F. 学习金融资产管理和量化投资 发展前景如何

相对于美国成熟的资产管理业务发展历史,中国的资产管理有着12年年轻的历史。正因为是起步阶段,人们能看到其无限发展空间和巨大潜力。一些大的金融机构运用资产管理进行经营,在金融危机期间保持着盈利,业内不乏有成功案例。 资产管理业务有个两难问题,即业务扩展和风险管理的平衡问题,也就说如果业务扩展太快,太多,风险控制就会弱,如果太关注于风险控制的话,可能业务扩展会慢。其实观察成功的案例会发现,这两点是可以做到平衡的。在国外金融机构会发现很多有意思的产品,比如气象气候、低碳、降雨量、体育等基金、债券,可是在中国却是比较空白。其实这是市场细分的结果,举个例子,如气象基金,今年冬天会不会冷?如果不冷的话,使用的燃料能源就会少,就会影响这类产品,如果有天然气产品,就可以进行价格对冲。这也是很多机构追求平稳发展来利用资产管理的原因。 拿期货公司来说,未来将大大偏向程序化交易策略,由此形成成熟的人才团队来更好地服务客户,将会使期货公司获得永续发展,拓宽业务利润获取的范围和深度。专家建议中国的资产管理业务应更重视专业性,对行业、公司、个人发展都是最重要的一点。根据麦肯锡的预计,中国的资产管理业务在未来的十年将保持每年24%的增长率,成为中国乃至世界发展最快的金融产业,可以说中国资产管理业将涌现出无限机遇。 目前国内的量化交易大概占到市场交易量的20%,每年都在增加,特别是这两年增长迅猛。70%的交易量由程序化交易完成,国内才刚刚起步,因此,国内的发展空间还非常巨大,产品的种类也会更加丰富,策略复杂度和交易工具的精细化也会不断提高。 从投资者身份来看,目前量化投资者主要人群集中在期货公司、私募基金以及券商的自营、基金公司的专户。规模上,以私募基金为主要参与群体。 从操作风格来看,目前期货市场有四类量化投资者,分别是阿尔法产品的使用者、趋势性交易者、套利交易者以及高频交易者。阿尔法产品的使用者,即利用股指期货与股票现货进行搭配,获得股票的超额收益;趋势性交易者,充分运用各种模型对价格进行预判,这种交易者的资金从几万到几千万都是存在的;套利交易,包括无风险的股指期现套利和统计套利;高频交易者,这种一般利用期货市场价格的微小变动进行快速交易,从而获得高收益。 量化交易模式越来越被更多的机构投资者所采用,量化交易模式将会成为主流的交易模式。届时,量化投资产品可能更加多样化,量化投资将会成为金融机构争夺客户资源的主要工具,然后随着量化工具更新速度的加快,量化投资的应用领域将会不断拓宽。 由此可见,学习资产管理与量化投资对公司业务和个人的发展是十分迫切并且必要的。

G. 应聘量化投资工作需要哪些技术

  • 强烈的兴趣

  • 想做好一件事情没有兴趣也只是三天打鱼两天晒网,最后不得而终,因此需要培养对投资形成强烈的兴趣,每根K线的波动能够刺激你的心脏随之不断跳动。

  • 学习能力

  • 量化交易是一门跨学科知识,必须有快速地问题解决能力和自学能力,懂得锲而不舍不断专研的试错法。研究生已经具备了较好的学习能力。

  • 编程

  • 编程很重要,现在Python是标配,matlab、R拿来做量化的人真的不多。虽然不是做开发,但是基本的简单编程知识还是要会。想学Python和Pandas,推荐Python基础教程和《利用Python进行数据分析》,想学编程知识,推荐《 代码大全 》,这本书没有什么代码,不要为名字所迷惑,不过如果想成为编程高手的话,看了绝不后悔。

    看书一定要经典,不经典的书简直就是浪费生命,这三本书如果不想买,网上电子版肯定是很多的,话不多说。

  • 量化知识

  • 很多程序员开始转量化,但是金融知识和量化知识不够。经典的重要性在此显得更为重要,编程的书籍不看经典的我也能进步,可能会慢点,但是量化金融知识不看经典的书,那么可能就会南辕北辙,甚至影响到投资的整个生涯,不对,走偏了的话,就无生涯可谈。

    投资的基础知识,比如股票债券基础知识,先来看看滋维博迪的《投资学(原书第9版)》([美]滋维·博迪(Zvi Bodie)

    再来一本干货,很多国内外研究生教程,介绍的更多的是衍生品,约翰赫尔的《期权、期货及其他衍生产品(原书第9版)》([加]约翰·赫尔(John C.Hull))

    期权这么火,推荐 麦克米伦的《金融期货与期权丛书:期权投资策略(原书第5版)》([美]劳伦斯 G.麦克米伦(Lawrence G.McMillan))

    想知道公募基金大佬如何做股票?李腾翻译的大作奉上,主动投资组合管理 创造高收益并控制风险的量化投资方法(原书第2版)

    想知道私募基金怎么搞交易的?交易中有哪些技巧?以及如何在量化中走弯路?推荐 范撒普的通向财务自由之路,这可不是一本关于财务分析、会计理论的书籍,真正理解了里面的思想,资金管理、风险控制你就不会纠结。

    现在中产压力这么大,那么多人有中年职业危机,想知道怎么把交易当做全职?推荐 埃尔德以交易为生,他可是将自己如何转行交易,并以交易作为自己的终身职业的心历路程和盘托出。

  • 英语

  • 你可以不说英语、听不懂英语,但最好是要看的懂英语,编程的原生环境是英语,quora、stackoverflow、github也是要求英语阅读能力,要是想用机器学习、深度学习做量化,那么多paperarticle都是英语,读不懂怎么做的好?本来是谈量化入门,但好像谈到量化进阶了。

  • 交易

  • 没有途径,实战是最好的方法。确实不行,模拟交易也可以。

    量化交易以思想为本,工具为用,路子不能走偏。

  • 快速迭代

  • 类似于实验,都是需要成千上万反反复复的检查、测试。在此,讲到了实验的快速开发和迭代,那么就顺便给个传送门:BigQuant - 人工智能量化投资平台.,人生苦短,一定要快速迭代,缩短策略开发生命周期。因为你的想法上千个,可能只有几个有价值。

H. 股票投资最少要多少钱

股票投资需要多少钱,这个问题还是根据投资者自身的情况来看。在不影响自身生活的情况下,用部分闲散资金操作。不要急于求成,不要举债才做。

以本人多年研究股市以及从事投资者教育相关经验来看,资金多手背后有一个更重要的问题就是,资金管理。

在进入股市前,你的资金必须分成(24=16)16份。当你第一次买入股票时,你只能用1/16资金买入股票,如你有32万元,你第一份进入股市的资金就是二万元。在买入股票时会出现很多种情况。

第一种情况:

买入股票时股票价格住下跌,一直跌到前期的低点,也就是第一个价格支撑位。你就要第二次买入股票,进入的资金是二份(2/16)就是4万元。第二次买入股票时股票价格又继续住下跌并又跌到中间低点,也就是第二个价格支撑点。这时你要第三次买入股票,买入的资金是四份(4/16)就是8万元。第三次买入股票时,股票价格又继续住下跌并跌到历史最低点。这时你要第四次买入股票,买入的资金是8份(8/16)就是16万元。尽管你的股票价格一直住下跌,你的持仓成本的重心在住下降,并下降很低。当股票的价格在这时反弹,你前面的损失可全数补回。如果在实战中调整这四个点的位置,特别是历史最低点的确定,非常重要,把这点定到最坏的情况,和不可能出现的点,在单边下跌中,投资者仍可能把投资风险降到零。

上面是一个单边下跌情况。

第二种情况:

当第一次买入股票时,股价就住上升,股价每上升4%时,你就必须卖出股票,卖出你手中股票的1/4,当股价再往上升,再卖出手中的股票的1/4,你手中总有3/4的股票在手上,股票当边上升,你的股票永远卖不完,你总可以卖到股价的最高点。(如图1-14所示)

股票价格不可能永远上升,它一定会回调,当股价回调时,你又买回你原来卖出的股票,当股价不断下降你前期卖出的股票又全数买回。这时股价上升得到的利润就被锁定。

当股价又回到上升趋势时你必须加仓,把第一个低点的二份资金在这时买进股票。当这二份资金处在赢利情况下,又开始按股价每上升4%卖出手中股票四分之一的原理。(如图1-15)

在上升趋势中又出现第二个低点就再加第三份资金8万元。

在上升趋势中又出现第三个低点就再加第四份资金4万元。

作者的操作经验是,要做到零风险投资很容易,为了追求零风险操作下利润的最大化,就要加仓,加仓不好就会产生投资风险。在股票的买卖中出现投资亏损主要是由于满仓而产生的。如果你不满仓,在股价下跌中你总有资金买入股票,当一反弹,你的损失就可以找回来,所以加仓一定要小心。

第三种情况:

当第一次买入股票时,股价就住下跌,但股价并没有跌到前期低点,股价就住上升,当股价上升时,你必须按照前面说的四分之一买卖股票原则。股价每上升4%你就买出你手中股票的1/4。虽然这个时间卖出股票,你是在亏损中卖出,但股票在这段上升中的利润被你锁定了,当股票回调时你又可将它们买回。

当股价上升到一定时间后又回调,回调后一定会形成一个最低点,在第一个最低点进行第一次加仓。第二次和第三次加仓又回到了上面谈到的办法。

第四种情况:

当第一次买入股票时,股价就住下跌,但股价并没有跌到前期低点,股价就住上升,当股价上升时,你也在不断卖出股票。股票上升到一定的高度,股价就一直住下跌,并跌破了股价的第一个支撑点,你就要补仓,用二倍第一次买入股票的资金买入股票,即4万元。补完仓后股价的走势又有二种情况,上升和下跌,如股价上升,按四分之一买卖原则买出股票。如下跌又有二种情况。下跌到第二个价格支撑点,在没有跌到第二个价格支撑点,股价就住上升。

在实际的操作中,会出现太多之情况,每一种都有二种情况发生,不断的推下去,出现的情况就成指数级增长,太多了,我这里不可能在一一介绍。

在股票买卖的操作中,牢记这下面这些操作原则,

股票价格的升和跌是无法预测的,你随时有二手准备;

当股价上升时买出股票,当股价下跌时卖进股票;

股价不跌到价格的支撑位不要补仓;

你的股票不处在赢利状况下(股价在上升趋势)不要加仓;

希望大家学有所得,能够早日建立起经得起市场考验的战法,早日财富自由

I. 量化投资

没有你想的书

我多年来都有关注这方面的书 可是也没有在国内找到

数量化投资是将投资理念及策略通过具体指标、参数的设计,体现到具体的模型中,让模型对市场进行不带任何情绪的跟踪;相对于传统投资方式来说,具有快速高效、客观理性、收益与风险平衡和个股与组合平衡等四大特点。量化投资技术几乎覆盖了投资的全过程,包括估值与选股、资产配置与组合优化、订单生成与交易执行、绩效评估和风险管理等,在各个环节都有不同的方法及量化模型:

一、估值与选股

估值:对上市公司进行估值是公司基本面分析的重要方法,在“价值投资”的基本逻辑下,可以通过对公司的估值判断二级市场股票价格的扭曲程度,继而找出价值被低估或高估的股票,作为投资决策的参考。对上市公司的估值包括相对估值法和绝对估值法,相对估值法主要采用乘数方法,如PE估值法、PB估值法、PS估值法、PEG估值法、PSG估值法、EV/EBITDA估值法等;绝对估值法主要采用折现的方法,如公司自由现金流模型、股权自由现金流模型和股利折现模型等。相对估值法因简单易懂,便于计算而被广泛使用;绝对估值法因基础数据缺乏及不符合模型要求的全流通假设而一直处于非主流地位。随着全流通时代的到来和国内证券市场的快速发展,绝对估值法正逐渐受到重视。

选股:在当前品种繁多的资本市场中,从浩瀚复杂的数据背后选出适合自己投资风格的股票变得越加困难。在基本面研究的基础上结合量化分析的手段就可以构建数量化选股策略,主流的选股方法如下:

资产配置方法与模型
资产配置类别 资产配置层次 资产配置方法 资产配置模型
战略资产配置 全球资产配置 大类资产配置 行业风格配置 收益测度 风险测度 估计方法 马克维茨 MV 模型 均值 -LPM 模型 VaR 约束模型 Black-Litterman 模型
战术资产配置 ( 动态资产配置 ) 周期判断 风格判断 时机判断 行业轮动策略 风格轮动策略 Alpha 策略 投资组合保险策略

基本面选股:通过对上市公司财务指标的分析,找出影响股价的重要因子,如:与收益指标相关的盈利能力、与现金流指标相关的获现能力、与负债率指标相关的偿债能力、与净资产指标相关的成长能力、与周转率指标相关的资产管理能力等。然后通过建立股价与因子之间的关系模型得出对股票收益的预测。股价与因子的关系模型分为结构模型和统计模型两类:结构模型给出股票的收益和因子之间的直观表达,实用性较强,包括价值型(本杰明·格雷厄姆—防御价值型、查尔斯·布兰迪—价值型等)、成长型(德伍·切斯—大型成长动能、葛廉·毕克斯达夫—中大型成长股等)、价值成长型(沃伦·巴菲特—优质企业选择法、彼得·林奇—GARP价值成长法等)三种选股方法;统计模型是用统计方法提取出近似线性无关的因子建立模型,这种建模方法因不需先验知识且可以检验模型的有效性,被众多经济学家推崇,包括主成分法、极大似然法等。

多因素选股:通过寻找引起股价共同变动的因素,建立收益与联动因素间线性相关关系的多因素模型。影响股价的共同因素包括宏观因子、市场因子和统计因子(通过统计方法得到)三大类,通过逐步回归和分层回归的方法对三类因素进行选取,然后通过主成分分析选出解释度较高的某几个指标来反映原有的大部分信息。多因素模型对因子的选择有很高的要求,因子的选择可依赖统计方法、投资经验或二者的结合,所选的因子要有统计意义上或市场意义上的显著性,一般可从动量、波动性、成长性、规模、价值、活跃性及收益性等方面选择指标来解释股票的收益率。

动量、反向选股:动量选股策略是指分析股票在过去相对短期的表现,事先对股票收益和交易量设定条件,当条件满足时买进或卖出股票的投资策略,该投资策略基于投资者对股票中期的反应不足和保守心理,在投资行为上表现为购买过去几个月表现好的股票而卖出过去几个月表现差的股票。反向选股策略则基于投资者的锚定和过度自信的心理特征,认为投资者会对上市公司的业绩状况做出持续过度反应,形成对业绩差的公司业绩过分低估和业绩的好公司业绩过分高估的现象,这为投资者利用反向投资策略提供了套利机会,在投资行为上表现为买进过去表现差的股票而卖出过去表现好的股票。反向选股策略是行为金融学理论发展至今最为成熟,也是最受关注的策略之一。

二、资产配置

资产配置指资产类别选择、投资组合中各类资产的配置比例以及对这些混合资产进行实时管理。资产配置一般包括两大类别、三大层次,两大类别为战略资产配置和战术/动态资产配置,三大层次为全球资产配置、大类资产配置和行业风格配置。资产配置的主要方法及模型如下:

战略资产配置针对当前市场条件,在较长的时间周期内控制投资风险,使得长期风险调整后收益最大化。战术资产配置通常在相对较短的时间周期内,针对某种具体的市场状态制定最优配置策略,利用市场短期波动机会获取超额收益。因此,战术资产配置是在长期战略配置的过程中针对市场变化制定的短期配置策略,二者相互补充。战略资产配置为未来较长时间内的投资活动建立业务基准,战术资产配置通过主动把握投资机会适当偏离战略资产配置基准,获取超额收益。

三、股价预测

股价的可预测性与有效市场假说密切相关。如果有效市场假说成立,股价就反映了所有相关的信息,价格变化服从随机游走,股价的预测就毫无意义,而我国的股市远未达到有效市场阶段,因此股价时间序列不是序列无关,而是序列相关的,即历史数据对股价的形成起作用,因此可以通过对历史信息的分析来预测股价。

主流的股价预测模型有灰色预测模型、神经网络预测模型和支持向量机预测模型(SVM)。灰色预测模型对股价的短期变化有很强的预测能力,近年发展起来的灰色预测模型包括GM(1, 1)模型、灰色新陈代谢模型和灰色马尔可夫模型。人工神经网络模型具有巨量并行性、存储分布性、结构可变性、高度非线性和自组织性等特点,且可以逼近任何连续函数,目前在金融分析和预测方面已有广泛的应用,效果较好。支持向量机模型在解决小样本、非线性及高维模式识别问题中有许多优势,且结构简单,具有全局优化性和较好的泛化能力,比神经网络有更好的拟合度。

四、绩效评估

作为集合投资、风险分散、专业化管理、变现性强等特点的投资产品,基金的业绩虽然受到投资者的关注,但要对基金有一个全面的评价,则需要考量基金业绩变动背后的形成原因、基金回报的来源等因素,绩效评估能够在这方面提供较好的视角与方法,风险调整收益、择时/股能力、业绩归因分析、业绩持续性及Fama的业绩分解等指标和方法可从不同的角度对基金的绩效进行评估。

绩效评估模型 / 指标

绩效评估准则
择时 / 股能力
业绩归因分析
风险调整收益
业绩持续性
Fama 业绩分解

模型 / 指标
T-M 模型

H-M 模型

GII 模型

C-L 模型
资产配置收益

证券选择收益

行业选择收益

行业内个股选择收益
RAROC

Sharp, Stutzer

Treynor, Jensen

, ,
双向表分析

时间序列相关性
总风险收益

系统风险收益

分散化投资收益

五、基于行为金融学的投资策略

上世纪50~70年代,随着马科维茨组合理论、CAPM模型、MM定理及有效市场假说的提出,现代金融经济学建立了一套成熟的理论体系,并且在学术界占据了主导地位,也被国际投资机构广泛应用和推广,但以上传统经济学的理论基石是理性人假设,在理性人假设下,市场是有效率的,但进入80年代以后,关于股票市场的一系列研究和实证发现了与理性人假设不符合的异常现象,如:日历效应、股权溢价之谜、期权微笑、封闭式基金折溢价之谜、小盘股效应等。面对这些金融市场的异常现象,诸多研究学者从传统金融理论的基本假设入手,放松关于投资者是完全理性的严格假设,吸收心理学的研究成果,研究股市投资者行为、价格形成机制与价格表现特征,取得了一系列有影响的研究成果,形成了具有重要影响力的学术流派-行为金融学。

行为金融学是对传统金融学理论的革命,也是对传统投资实践的挑战。随着行为金融理论的发展,理论界和投资界对行为金融理论和相关投资策略作了广泛的宣传和应用,好买认为,无论机构投资者还是个人投资者,了解行为金融学的指导意义在于:可以采取针对非理性市场行为的投资策略来实现投资目标。在大多数投资者认识到自己的错误以前,投资那些定价错误的股票,并在股价正确定位之后获利。目前国际金融市场中比较常见且相对成熟的行为金融投资策略包括动量投资策略、反向投资策略、小盘股策略和时间分散化策略等。

六、程序化交易与算法交易策略

根据NYSE的定义,程序化交易指任何含有15只股票以上或单值为一百万美元以上的交易。程序化交易强调订单是如何生成的,即通过某种策略生成交易指令,以便实现某个特定的投资目标。程序化交易主要是大机构的工具,它们同时买进或卖出整个股票组合,而买进和卖出程序可以用来实现不同的目标,目前程序化交易策略主要包括数量化程序交易策略、动态对冲策略、指数套利策略、配对交易策略和久期平均策略等。

算法交易,也称自动交易、黑盒交易或无人值守交易,是使用计算机来确定订单最佳的执行路径、执行时间、执行价格及执行数量的交易方法,主要针对经纪商。算法交易广泛应用于对冲基金、企业年金、共同基金以及其他一些大型的机构投资者,他们使用算法交易对大额订单进行分拆,寻找最佳路由和最有利的执行价格,以降低市场的冲击成本、提高执行效率和订单执行的隐蔽性。任何投资策略都可以使用算法交易进行订单的执行,包括做市、场内价差交易、套利及趋势跟随交易。算法交易在交易中的作用主要体现在智能路由、降低冲击成本、提高执行效率、减少人力成本和增加投资组合收益等方面。主要的算法包括:交易量加权平均价格算法(VWAP)、保证成交量加权平均价格算法(Guaranteed VWAP)、时间加权平均价格算法(TWAP)、游击战算法(Guerrilla)、狙击手算法(Sniper)、模式识别算法(Pattern Recognition)等。

综上所述,数量化投资技术贯穿基金的整个投资流程,从估值选股、资产配置到程序化交易与绩效评估等。结合量化投资的特点及我国证券市场的现状,好买认为量化投资技术在国内基金业中的应用将主要集中在量化选股、资产配置、绩效评估与风险管理、行为金融等方面,而随着包括基金在内的机构投资者占比的不断提高、衍生品工具的日渐丰富(股指期货、融资融券等)以及量化投资技术的进步,基金管理人的投资策略将会越来越复杂,程序化交易(系统)也将有快速的发展。

热点内容
博世有多少亿市值 发布:2025-02-12 19:22:40 浏览:86
一手股票交易税多少 发布:2025-02-12 19:06:39 浏览:508
基金6位数字叫什么 发布:2025-02-12 19:04:52 浏览:782
股票软件多头买入卖出 发布:2025-02-12 18:52:58 浏览:168
免安装版的股票软件 发布:2025-02-12 18:47:59 浏览:486
暨南大学金融学两个校区哪个好 发布:2025-02-12 18:45:40 浏览:973
农发种业股票历史最低价 发布:2025-02-12 18:43:03 浏览:111
基金怎么算才满七日 发布:2025-02-12 18:38:10 浏览:282
社交货币如何发展 发布:2025-02-12 18:23:40 浏览:8
股市里怎么区分主图 发布:2025-02-12 18:20:30 浏览:865