股票交易数据海量
⑴ 如何得到大量股票数据
=bdlfzkllz为你回答=
首先你的软件必须更新好所有的K线日线数据。
其次你可以导出日K线数据。基本上所有软件都有这个功能。
以通达信为例:选左上角-系统-第二个选项-数据导出
上图有真相
⑵ 大数据与海量数据的区别
大数据与海量数据的区别
如果仅仅是海量的结构性数据,那么解决的办法就比较的单一,用户通过购买更多的存储设备,提高存储设备的效率等解决此类问题。然而,当人们发现数据库中的数据可以分为三种类型:结构性数据、非结构性数据以及半结构性数据等复杂情况时,问题似乎就没有那么简单了。
大数据汹涌来袭
当类型复杂的数据汹涌袭来,那么对于用户IT系统的冲击又会是另外一种处理方式。很多业内专家和第三方调查机构通过一些市场调查数据发现,大数据时代即将到来。有调查发现,这些复杂数据中有85%的数据属于广泛存在于社交网络、物联网、电子商务等之中的非结构化数据。这些非结构化数据的产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。
如今大数据的概念也存在着很多的炒作和大量的不确定性。为此,编者详细向一些业内专家详细了解有关方面的问题,请他们谈一谈,大数据是什么和不是什么,以及如何应对大数据等问题,将系列文章的形式与网友见面。
有人将多TB数据集也称作”大数据”。据市场研究公司IDC统计,数据使用预计将增长44倍,全球数据使用量将达到大约35.2ZB(1ZB = 10亿TB)。然而,单个数据集的文件尺寸也将增加,导致对更大处理能力的需求以便分析和理解这些数据集。
EMC曾经表示,它的1000多个客户在其阵列中使用1PB(千兆兆)以上的数据数据,这个数字到2020年将增长到10万。一些客户在一两年内还将开始使用数千倍多的数据,1EB(1艾字节 = 10亿GB)或者更多的数据。
对大企业而言,大数据的兴起部分是因为计算能力可用更低的成本获得,且各类系统如今已能够执行多任务处理。其次,内存的成本也在直线下降,企业可以在内存中处理比以往更多的数据,另外是把计算机聚合成服务器集群越来越简单。IDC认为,这三大因素的结合便催生了大数据。同时,IDC还表示,某项技术要想成为大数据技术,首先必须是成本可承受的,其次是必须满足IBM所描述的三个”V”判据中的两个:多样性(variety)、体量(volume)和速度(velocity)。
多样性是指,数据应包含结构化的和非结构化的数据。
体量是指聚合在一起供分析的数据量必须是非常庞大的。
而速度则是指数据处理的速度必须很快。
大数据”并非总是说有数百个TB才算得上。根据实际使用情况,有时候数百个GB的数据也可称为大数据,这主要要看它的第三个维度,也就是速度或者时间维度。
Garter表示,全球信息量正在以59%以上的年增长率增长,而量是在管理数据、业务方面的显著挑战,IT领袖必须侧重在信息量、种类和速度上。
量:企业系统内部的数据量的增加是由交易量、其它传统数据类型和新的数据类型引发的。过多的量是一个存储的问题,但过多的数据也是一个大量分析的问题。
种类:IT领袖在将大量的交易信息转化为决策上一直存在困扰 – 现在有更多类型的信息需要分析 – 主要来自社交媒体和移动(情景感知)。种类包括表格数据(数据库)、分层数据、文件、电子邮件、计量数据、视频、静态图像、音频、股票行情数据、金融交易和其它更多种类。
速度:这涉及到数据流、结构化记录的创建,以及访问和交付的可用性。速度意味着正在被生成的数据有多快和数据必须被多快地处理以满足需求。
虽然大数据是一个重大问题,Gartner分析师表示,真正的问题是让大数据更有意义,在大数据里面寻找模式帮助组织机构做出更好的商业决策。
诸子百家谈如何定义”大数据”
尽管”Big Data”可以翻译成大数据或者海量数据,但大数据和海量数据是有区别的。
定义一:大数据 = 海量数据 + 复杂类型的数据
Informatica中国区首席产品顾问但彬认为:”大数据”包含了”海量数据”的含义,而且在内容上超越了海量数据,简而言之,”大数据”是”海量数据”+复杂类型的数据。
但彬进一步指出:大数据包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力。
大数据是由三项主要技术趋势汇聚组成:
海量交易数据:在从 ERP应用程序到数据仓库应用程序的在线交易处理(OLTP)与分析系统中,传统的关系数据以及非结构化和半结构化信息仍在继续增长。随着企业将更多的数据和业务流程移向公共和私有云,这一局面变得更加复杂。海量交互数据:这一新生力量由源于 Facebook、Twitter、LinkedIn 及其它来源的社交媒体数据构成。它包括了呼叫详细记录(CDR)、设备和传感器信息、GPS和地理定位映射数据、通过管理文件传输(Manage File Transfer)协议传送的海量图像文件、Web 文本和点击流数据、科学信息、电子邮件等等。海量数据处理:大数据的涌现已经催生出了设计用于数据密集型处理的架构,例如具有开放源码、在商品硬件群中运行的 Apache Hadoop。对于企业来说,难题在于以具备成本效益的方式快速可靠地从 Hadoop 中存取数据。定义二:大数据包括A、B、C三个要素
如何理解大数据?NetApp 大中华区总经理陈文认为,大数据意味着通过更快获取信息来使做事情的方式变得与众不同,并因此实现突破。大数据被定义为大量数据(通常是非结构化的),它要求我们重新思考如何存储、管理和恢复数据。那么,多大才算大呢?考虑这个问题的一种方式就是,它是如此之大,以至于我们今天所使用的任何工具都无法处理它,因此,如何消化数据并把它转化成有价值的洞见和信息,这其中的关键就是转变。
基于从客户那里了解的工作负载要求,NetApp所理解的大数据包括A、B、C三个要素:分析(Analytic),带宽(Bandwidth)和内容(Content)。
1. 大分析(Big Analytics),帮助获得洞见 – 指的是对巨大数据集进行实时分析的要求,它能带来新的业务模式,更好的客户服务,并实现更好的结果。
2. 高带宽(Big Bandwidth),帮助走得更快 – 指的是处理极端高速的关键数据的要求。它支持快速有效地消化和处理大型数据集。
3. 大内容(Big Content),不丢失任何信息- 指的是对于安全性要求极高的高可扩展的数据存储,并能够轻松实现恢复。它支持可管理的信息内容存储库、而不只是存放过久的数据,并且能够跨越不同的大陆板块。
大数据是一股突破性的经济和技术力量,它为 IT 支持引入了新的基础架构。大数据解决方案消除了传统的计算和存储的局限。借助于不断增长的私密和公开数据,一种划时代的新商业模式正在兴起,它有望为大数据客户带来新的实质性的收入增长点以及富于竞争力的优势。
以上是小编为大家分享的关于大数据与海量数据的区别的相关内容,更多信息可以关注环球青藤分享更多干货
⑶ 海量数据股票代码多少
603138,海量数据。这是一个次新股,最高涨到83.9,现在回落到54.3元。属于计算机应用行业。目前价格依然虚高,不建议买入。
⑷ 现在交易总量 有没有那个数据可以知道 一只股票一共交易了多少笔。
这应该没有软件可以知道.交易数据是按单位时间统计的,不是按每笔交易统计的,交易数据都是以tick数据为最新单位.也就是说500毫秒一统计并发出,也就是现在接收到的数据是前500毫秒的总共交易了多少.而不是交易一笔发出一笔的按笔计算的.但有一种情况这个是可以统计的,就是这个交易的股票或者某商品,交易不活跃.每笔交易时间间隔大于500毫秒,那就可以统计了.交易软件的那个笔信息,也不是按每笔交易统计的,也是按时间统计的,你要是细心你可以查一下看看就知道了.
⑸ 股票量化是什么意思
所谓量化交易,是指以先进的数学模型替代人为的主观判断,同时利用计算机技术从庞大的历史数据中海选出能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为,研究表明,板块、行业轮动在机构投资者的交易中最为获利的盈利模式是基于行业层面进行周期性和防御性的轮动配置,这也是机构投资者最普遍采用的策略。此外,周期性股票在扩张性货币政策时期表现较好,而在紧缩环境下则支持非周期性行业。行业收益差在扩张性政策和紧缩性政策下具有显著的差异。
拓展资料:
一、量化交易特点
1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
二、量化交易潜在风险
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
⑹ 关于股票的交易数据
你是新手吧!
我只想和你说,这些都只是参考,没有绝对的数据!我可以和你说一件绝对的事,只叫你有耐心!
1.股票还没拉伸的时候就是你的机会,一旦拉伸机会就不是你的了,你如果在拉伸的时候还没吃进这只股,那么就别再去碰了!
2.潜伏,需要时间,时间会给你金钱,这不会有错,千万别吃拉了又拉的股,那些股你只能看着,并不会给你带来利润,但是看看还是挺激情的!
3,炒股会有一个过程,学什么都一样,从新手到老手,那是经验的积累!
4,新手炒股看K线看什么数据看什么外盘内盘看什么MACD,但是老股名却不是,尤其是会赚钱的股名更加不是看那些东西,那些东西是给庄家赚钱的公司!而对于我们来说,对于庄家来说,MACD越差就越是买点,你知道吗?如果是你,肯定以为MACD翻红才能买,但是你错了,等那些指标走好的时候,就是庄家要出货的时候了,你应该在最差的时候底谷的时候慢慢吸货,分多天多步吸货!然后等拉升后抛出换其他还未拉伸的股!
就先说这些,希望你能吸取!我的BOLG里每天会更新一些数据,你可以去看看!或许你会找到很到的牛股,也能给你带来利润!
⑺ 如何下载股票历史成交数据到Excel或txt
网络搜:大富翁数据中心,他们有提供这个,价格也不贵,花点小钱办大事,历史一分钟,五分钟,任意分钟都有,还有分笔,逐笔等,股票期货外汇全有。 还有每天盘后提供下载
⑻ 可不可以基于海量数据预测股票
另外,市场是动态的,有时再多的海量数据也不能用来预测后期的市场,就比如2017年下半年,以往被证明操作成功率很高的三板股战法和打板战法等纷纷失效,就是因为上面维稳的介入。我们只能跟随市场的变化,及时转变自己的认知。
以上内容为股帮师姐原创,如转载请注明出处,如有不同意见,欢迎交流。
最后分享一下微信公众号:股帮师姐,获取更多股市知识。
⑼ 如何快速取得股票交易历史数据
示例:
最近二十天左右的每5分钟数据
网页链接
(参数:股票编号、分钟间隔(5、15、30、60)、均值(5、10、15、20、25)、查询个数点(最大值242))
返回数据格式:日期、开盘价、最高价、最低价、收盘价、成交量
⑽ 如何获取股票交易数据
你指的交易数据是什么,如果是自己的交易数据的话,你使用的券商是会提供每次交易的交割单的,在交易软件上也能看到你每笔交易的委托和成交明细。
如果是市场上所有人的交易数据的话,这个是拿不到的。能拿到交易数据的都是各大券商,交易所和上市公司,但是上市公司是只能拿到自己公司的股票交易数据。