python评估股票交易模型
A. 怎样用 Python 写一个股票自动交易的程序
股票自动交易助手提供了一个 Python 自动下单接口,参考代码
#股票自动交易助手Python自动下单使用例子
#把此脚本和StockOrderApi.pyOrder.dll放到你自己编写的脚本同一目录
fromStockOrderApiimport*
#买入测试
#Buy(u"600000",100,0,1,0)
#卖出测试,是持仓股才会有动作
#Sell(u"000100",100,0,1,0)
#账户信息
print("股票自动交易接口测试")
print("账户信息")
print("--------------------------------")
arrAccountInfo=["总资产","可用资金","持仓总市值","总盈利金额","持仓数量"];
foriinrange(0,len(arrAccountInfo)):
value=GetAccountInfo(u"",i,0)
print("%s%f"%(arrAccountInfo[i],value))
print("--------------------------------")
print("")
print("股票持仓")
print("--------------------------------")
#取出所有的持仓股票代码,结果以','隔开的
allStockCode=GetAllPositionCode(0)
allStockCodeArray=allStockCode.split(',')
foriinrange(0,len(allStockCodeArray)):
vol=GetPosInfo(allStockCodeArray[i],0,0)
changeP=GetPosInfo(allStockCodeArray[i],4,0)
print("%s%d%.2f%%"%(allStockCodeArray[i],vol,changeP))
print("--------------------------------")
B. 如何建立一个股票量化交易模型并仿真
用python:金融想法->数据处理->模型回测->模拟交易->业绩归因->模型修正。
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化交易具有以下几个方面的特点:
1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
C. 怎样用 Python 写一个股票自动交易的程序
方法一
前期的数据抓取和分析可能python都写好了,所以差这交易指令接口最后一步。对于股票的散户,正规的法子是华宝,国信,兴业这样愿意给接口的券商,但貌似开户费很高才给这权利,而且只有lts,ctp这样的c++接口,没python版就需要你自己封装。
方法二
是wind这样的软件也有直接的接口,支持部分券商,但也贵,几万一年是要的。
方法三
鼠标键盘模拟法,很复杂的,就是模拟键盘鼠标去操作一些软件,比如券商版交易软件和大智慧之类的。
方法四
就是找到这些软件的关于交易指令的底层代码并更改,不过T+1的规则下,预测准确率的重要性高于交易的及时性,花功夫做数据分析就好,交易就人工完成吧
D. python如何获得股票实时交易数据
使用easyquotation这个库。(不用重复造轮子了)
github地址是:
https://github.com/shidenggui/easyquotation
E. 使用python做量化交易策略测试和回验,有哪些比较成熟一些的库
比较成熟的库可以参考如下几个:
pybacktest
pyalgotrader
zipline
bt
backtrader
pybacktest基于vector,不是event based,快得多得多,缺点也明显。
F. 有没有会用Python编写一个简单的建模股票价格的小程序能够对股票数据进行简单预测即可!求助!
虽然懂python 但是不懂股票,
采用random()可以么,哈哈
G. 股票交易模型案例
一般股票交易的模型就是量化交易,你可以自己先下载量化软件看看已经有的指标,再进行优化
H. 如何建立一个股票量化交易模型并仿真
用文化财经软件,编写程序化交易系统,具体参考官网教程
I. 如何利用Python预测股票价格
预测股票价格没有意义。
单支股票价格,多股组合,大盘这些都可以使用神经网络来学习,02年就做过了,涨跌预测平均能达到54%到57%的准确率,但是只能定性,无法定量,因此,在扣除印花税之后无利可图。
纯粹使用股票交易数据来预测并保证总体获利不是程序能办到的,人也办不到。
目前世界上最先进的炒股机器也只能利用网络时差那微不可计的零点几秒在欧洲与美国证券间倒来倒去,那套系统研发费用数千万,硬件(主要是独立光缆)费用以亿计。
J. 股票估价的股票估价的模型
股票估价的基本模型
计算公式为:
股票价值
估价
R——投资者要求的必要收益率
Dt——第t期的预计股利
n——预计股票的持有期数
零增长股票的估价模型
零成长股是指发行公司每年支付的每股股利额相等,也就是假设每年每股股利增长率为零。每股股利额表现为永续年金形式。零成长股估价模型为:
股票价值=D/Rs
例:某公司股票预计每年每股股利为1.8元,市场利率为10%,则该公司股票内在价值为:
股票价值=1.8/10%=18元
若购入价格为16元,因此在不考虑风险的前提下,投资该股票是可行的
二、不变增长模型
(1)一般形式。如果我们假设股利永远按不变的增长率增长,那 么就会建立不变增长模型。 [例]假如去年某公司支付每股股利为 1.80 元,预计在未来日子 里该公司股票的股利按每年 5%的速率增长。因此,预期下一年股利 为 1.80×(1 十 0.05)=1.89 元。假定必要收益率是 11%,该公司的 股票等于 1. 80×[(1 十 0. 05)/(0.11—0. 05)]=1. 89/(0. 11—0. 05) =31.50 元。而当今每股股票价格是 40 元,因此,股票被高估 8.50 元,建议当前持有该股票的投资者出售该股票。
(2)与零增长模型的关系。零增长模型实际上是不变增长模型的 一个特例。特别是,假定增长率合等于零,股利将永远按固定数量支 付,这时,不变增长模型就是零增长模型。 从这两种模型来看, 虽然不变增长的假设比零增长的假设有较小 的应用限制,但在许多情况下仍然被认为是不现实的。但是,不变增 长模型却是多元增长模型的基础,因此这种模型极为重要。
三、多元增长模型 多元增长模型是最普遍被用来确定普通股票内在价值的贴现现 金流模型。这一模型假设股利的变动在一段时间内并没有特定的 模式可以预测,在此段时间以后,股利按不变增长模型进行变动。因 此,股利流可以分为两个部分。 第一部分 包括在股利无规则变化时期的所有预期股利的现值 第二部分 包括从时点 T 来看的股利不变增长率变动时期的所有预期股利的现 值。因此,该种股票在时间点的价值(VT)可通过不变增长模型的方程 求出
[例]假定 A 公司上年支付的每股股利为 0.75 元,下一年预期支 付的每股票利为 2 元,因而再下一年预期支付的每股股利为 3 元,即 从 T=2 时, 预期在未来无限时期, 股利按每年 10%的速度增长, 即 0:,Dz(1 十 0.10)=3×1.1=3.3 元。假定该公司的必要收益 率为 15%,可按下面式子分别计算 V7—和认 t。该价格与目前每股 股票价格 55 元相比较,似乎股票的定价相当公平,即该股票没有被 错误定价。
(2)内部收益率。零增长模型和不变增长模型都有一个简单的关 于内部收益率的公式,而对于多元增长模型而言,不可能得到如此简 捷的表达式。虽然我们不能得到一个简捷的内部收益率的表达式,但 是仍可以运用试错方法,计算出多元增长模型的内部收益率。即在建 立方程之后,代入一个假定的伊后,如果方程右边的值大于 P,说明 假定的 P 太大;相反,如果代入一个选定的尽值,方程右边的值小于 认说明选定的 P 太小。继续试选尽,最终能程式等式成立的尽。 按照这种试错方法,我们可以得出 A 公司股票的内部收益率是 14.9%。把给定的必要收益 15%和该近似的内部收益率 14.9%相 比较,可知,该公司股票的定价相当公平。
(3)两元模型和三元模型。有时投资者会使用二元模型和三元模 型。二元模型假定在时间了以前存在一个公的不变增长速度,在时间 7、以后,假定有另一个不变增长速度城。三元模型假定在工时间前, 不变增长速度为身 I,在 71 和 72 时间之间,不变增长速度为期,在 72 时间以后,不变增长速度为期。设 VTl 表示 在最后一个增长速度开始后的所有股利的现值,认-表示这以前 所有股利的现值,可知这些模型实际上是多元增长模型的特例。
四、市盈率估价方法 市盈率,又称价格收益比率,它是每股价格与每股收益之间的比 率,其计算公式为反之,每股价格=市盈率×每股收益 如果我们能分别估计出股票的市盈率和每股收益, 那么我们就能 间接地由此公式估计出股票价格。这种评价股票价格的方法,就是 “市盈率估价方法”
五、贴现现金流模型 贴现现金流模型是运用收入的资本化定价方法来决定普通股票 的内在价值的。按照收入的资本化定价方法,任何资产的内在价值是 由拥有这种资产的投资 者在未来时期中所接受的现金流决定的。 由于现金流是未来时期的预 期值,因此必须按照一定的贴现率返还成现值,也就是说,一种资产 的内在价值等于预期现金流的贴现值。对于股票来说,这种预期的现 金流即在未来时期预期支付的股利,因此,贴现现金流模型的公式为 式中:Dt 为在时间 T 内与某一特定普通股相联系的预期的现金 流,即在未来时期以现金形式表示的每股股票的股利;K 为在一定风 险程度下现金流的合适的贴现率; V 为股票的内在价值。 在这个方程里,假定在所有时期内,贴现率都是一样的。由该方 程我们可以引出净现值这个概念。净现值等于内在价值与成本之差, 即 式中:P 为在 t=0 时购买股票的成本。 如果 NPV>0,意味着所有预期的现金流入的净现值之和大于投 资成本,即这种股票被低估价格,因此购买这种股票可行; 如果 NPV<0,意味着所有预期的现金流入的净现值之和小于投 资成本,即这种股票被高估价格,因此不可购买这种股票。 在了解了净现值之后,我们便可引出内部收益率这个概念。内部 收益率就是使投资净现值等于零的贴现率。如果用 K*代表内部收益 率,通过方程可得 由方程可以解出内部收益率 K*。把 K*与具有同等风险水平的股 票的必要收益率(用 K 表示)相比较:如果 K*>K,则可以购买这种股 票;如果 K*<K,则不要购买这种股票。 一股普通股票的内在价值时存在着一个麻烦问题, 即投资者必须 预测所有未来时期支付的股利。 由于普通股票没有一个固守的生命周 期,因此建议使用无限时期的股利流,这就需要加上一些假定。 这些假定始终围绕着胜利增长率,一般来说,在时点 T,每股股 利被看成是在时刻 T—1 时的每股股利乘上胜利增长率 GT,其计 例如,如果预期在 T=3 时每股股利是 4 美元,在 T=4 时每股股利 是 4.2 美元,那么不同类型的贴现现金流模型反映了不同的股利增 长率的假定