股票市場上的布朗運動
Ⅰ 關於期權股票的布朗運動隨機性
嚇,這么復雜么?隨機性怎能用公式死算,貓不會指標,更不會公式,但索羅斯胡嘀咕的人性的貪婪與恐懼是沒法估計滴,貓信這話,所以隨機性就沒法算,大慨是這原因吧。
Ⅱ 布朗運動的金融數學
將布朗運動與股票價格行為聯系在一起,進而建立起維納過程的數學模型是本世紀的一項具有重要意義的金融創新,在現代金融數學中佔有重要地位。迄今,普遍的觀點仍認為,股票市場是隨機波動的,隨機波動是股票市場最根本的特性,是股票市場的常態。
布朗運動假設是現代資本市場理論的核心假設。現代資本市場理論認為證券期貨價格具有隨機性特徵。這里的所謂隨機性,是指數據的無記憶性,即過去數據不構成對未來數據的預測基礎。同時不會出現驚人相似的反復。隨機現象的數學定義是:在個別試驗中其結果呈現出不確定性;在大量重復試驗中其結果又具有統計規律性的現象。描述股價行為模型之一的布朗運動之維納過程是馬爾科夫隨機過程的一種特殊形式;而馬爾科夫過程是一種特殊類型的隨機過程。隨機過程是建立在概率空間上的概率模型,被認為是概率論的動力學,即它的研究對象是隨時間演變的隨機現象。所以隨機行為是一種具有統計規律性的行為。股價行為模型通常用著名的維納過程來表達。假定股票價格遵循一般化的維納過程是很具誘惑力的,也就是說,它具有不變的期望漂移率和方差率。維納過程說明只有變數的當前值與未來的預測有關,變數過去的歷史和變數從過去到現在的演變方式則與未來的預測不相關。股價的馬爾科夫性質與弱型市場有效性(the weak form of market efficiency)相一致,也就是說,一種股票的現價已經包含了所有信息,當然包括了所有過去的價格記錄。但是當人們開始採用分形理論研究金融市場時,發現它的運行並不遵循布朗運動,而是服從更為一般的幾何布朗運動(geometric browmrian motion)。
Ⅲ 幾何布朗運動和分數布朗運動有什麼區別
幾何布朗運動 (GBM) (也叫做指數布朗運動) 是連續時間情況下的隨機過程,其中隨機變數的對數遵循布朗運動,[1] also called aWiener process.幾何布朗運動在金融數學中有所應用,用來在布萊克-舒爾斯定價模型中模仿股票價格。
分數布朗運動
世界是非線性的,宇宙萬物絕大部分不是有序的、線性的、穩定的,而是混沌的、非線性的、非穩定和漲落不定的沸騰世界。有序的、線性的、穩定的只存在於我們自己構造的理論宮殿,而現實宇宙充滿了分形。在股票市場的價格波動、心率及腦波的波動、電子元器件中的雜訊、自然地貌等大量的自然現象和社會現象中存在著一類近乎全隨機的現象,它們具有如下特性:在時域或空域上有自相似性和長時相關性和繼承性;在頻域上,其功率譜密度在一定頻率范圍內基本符合1/f的多項式衰減規律。因此被稱為1/f族隨機過程。Benoit Mandelbrot和Van Ness 提出的分數布朗運動(fractional Brownian motion,FBM)模型是使用最廣泛的一種,它具有自相似性、非平穩性兩個重要性質,是許多自然現象和社會現象的內在特性。分數布朗運動被賦予不同的名稱,如分形布朗運動、有偏的隨機遊走(Biased Random walk)、分形時間序列(Fractional time serial)、分形維納過程等。其定義如下:
設0<H<1,Hurst參數為H的分數布朗運動為一連續Gaussian過程,且 ,協方差為 。H=1/2時, 即為標准布朗運動 。
分數布朗運動特徵是時間相關函數C(t)≠0,即有持久性或反持久性,或者說有「長程相關性」,不失一般性,可以給出一維情形的布朗運動及分數布朗運動的定義。分數布朗運動既不是馬爾科夫過程,又不是半鞅,所以不能用通常的隨機來分析。分數布朗運動與布朗運動之間的主要區別為:分數布朗運動中的增量是不獨立的,而布朗運動中的增量是獨立的;分數布朗運動的深層次上和布朗運動的層次上它們的分維值是不同的,分數布朗運動(分形雜訊)的分維值alpha等於1/H,H為Hurst指數,而布朗運動(白雜訊)的分維值都是2。
Hurst在一系列的實證研究中發現,自然現象都遵循「有偏隨機遊走」,即一個趨勢加上雜訊,並由此提出了重標極差分析法(Rescaled Range Analysis,R/S分析)。設R/S表示重標極差,N表示觀察次數,a是固定常數,H表示赫斯特指數,在長達40多年的研究中,通過大量的實證研究,赫斯特建立了以下關系:
R/S=(aN)H
通過對上式取對數,可得:
log(R/S)=H(logN十loga)
只要找出R/S關於N的log/log圖的斜率,就可以來估計H的值。 Hurst指數H用來度量序列相關性和趨勢強度:當H=0.5時,標准布朗運動,時間序列服從隨機漫步;當H≠0.5時,C(t)≠0,且與時間無關,正是分數布朗運動的特徵。當0.5<H<1時,序列是趨勢增強的,遵循有偏隨機遊走過程;當0<H<0.5時,序列是反持續性的。可以看出,Hurst指數能夠很好地刻畫證券市場的波動特徵,將R/S分析應用於金融市場,可以判斷收益率序列是否具有記憶性,記憶性是持續性的還是反持續性的。所以,分數布朗運動是復雜系統科學體系下的數理金融學的一個合適的工具,作為對描述金融市場價格波動行為模型的維納過程的一般化、深刻化具有重要的理論與現實意義。
Ⅳ 有關布朗運動和期權定價的問題,望大神解答!
布朗運動是將看起來連成一片的液體,在高倍顯微鏡下看其實是由許許多多分子組成的。液體分子不停地做無規則的運動,不斷地隨機撞擊懸浮微粒。當懸浮的微粒足夠小的時候,由於受到的來自各個方向的液體分子的撞擊作用是不平衡的。在某一瞬間,微粒在另一個方向受到的撞擊作用超強的時候,致使微粒又向其它方向運動,這樣,就引起了微粒的無規則的運動就是布朗運動。
期權定價模型(OPM)----由布萊克與斯科爾斯在20世紀70年代提出。該模型認為,只有股價的當前值與未來的預測有關;變數過去的歷史與演變方式與未來的預測不相關 。模型表明,期權價格的決定非常復雜,合約期限、股票現價、無風險資產的利率水平以及交割價格等都會影響期權價格。
Ⅳ 怎樣求解布朗運動的期望和方差
怎樣求解布朗運動的期望和方差
布朗運動(Brownian motion)是一種正態分布的獨立增量連續隨機過程。它是隨機分析中基本概念之一。其基本性質為:布朗運動W(t)是期望為0方差為t(時間)的正態隨機變數。對於任意的r小於等於s,W(t)-W(s)獨立於的W(r),且是期望為0方差為t-s的正態隨機變數。可以證明布朗運動是馬爾可夫過程、鞅過程和伊藤過程。
Ⅵ 研究衍生品的時候為什麼用幾何布朗運動來模擬股票價格的運行軌跡
其實很簡單,GBM(至少在一定程度上)符合人們對市場的觀察。例如,直觀的說,股票的價格看起來很像隨機遊走,再例如,股票價格不會為負,這樣起碼GBM比普通的布朗運動合適,因為後者是可以為負的。
再稍微復雜一點,對收益率做測試( S(t)/S(t-1) - 1)做測試,發現,哎居然還基本是個正態分布。收益率是正態的,股價就是GBM模型
總之,就是大家做了很多統計測試,發現假設成GBM還能很好的逼近真實數值,比較接近事實。所以就用這個。
其實將精確的數學模型應用到金融的時間非常短。最早是1952年的Markowitz portfolio selection. 那個其實就是一個簡單的優化問題。後來的CAPM APT等諸多模型,也僅僅研究的是一系列證券,他們之間回報、收益率以及其他影響因素關系,沒有涉及到對股價運動的描述。
第一次提出將股價是GBM應用在嚴格模型的是black-scholes model 。在這個模型中提出了若干個假設,其中一個就是股價是GBM的。
Ⅶ 幾何布朗運動的在金融中的應用
主條目:布萊克-舒爾斯模型
幾何布朗運動在布萊克-舒爾斯定價模型被用來定性股票價格,因而也是最常用的描述股票價格的模型 。
使用幾何布朗運動來描述股票價格的理由: 幾何布朗運動的期望與隨機過程的價格(股票價格)是獨立的, 這與我們對現實市場的期望是相符的 。 幾何布朗運動過程只考慮為正值的價格, 就像真實的股票價格。 幾何布朗運動過程與我們在股票市場觀察到的價格軌跡呈現了同樣的「roughness」 。 幾何布朗運動過程計算相對簡單。. 然而,幾何布朗運動並不完全現實,尤其存在一下缺陷: 在真實股票價格中波動隨時間變化 (possiblystochastically), 但是在幾何布朗運動中, 波動是不隨時間變化的。 在真實股票價格中, 收益通常不服從正態分布 (真實股票收益有更高的峰度('fatter tails'), 代表了有可能形成更大的價格波動).
Ⅷ 布朗運動是什麼
布朗運動的特點是布朗粒子的位移分布和粒子數密度分布都滿足擴散現象的規律。這說明在粒子濃度不均勻時發生的擴散現象,其本質是粒子的布朗運動產生了位移。在實際的技術應用中,擴散技術相當引人重視。 在半導體集成電路製造過程中,常用擴散方法將特定雜質引入半導體的預定部位,以形成器件或組件,使其具有設計的電路功能。擴散過程是在較高溫度下進行的,雜質原子通過晶體中的缺陷(空位或填隙原子)而遷移。所以,作布朗運動的粒子不只有尺度在微米級的顆粒,也可能是原子或分子。布朗粒子的運動特點是具有隨機性和偶然性。 在離子晶體中有正、負兩種離子,同時存在正、負離子空位,正、負離子就是通過這些空位來擴散的。由於這種運動是隨機的和無規則的,各個方向遷移的概率相同,因此,帶電粒子的布朗運動不會產生電流。但是如果加上恆定電場,離子運動就會在隨機的無規則的遷移之上加一項定向運動,從而能傳導電流。 由於作熱運動的大量介質分子(原子)對宏觀小物體的無規碰撞導致隨機運動引起的漲落,這種漲落以布朗運動為代表,所以布朗運動的實質是漲落。 電路中也有漲落現象,譬如電流、電壓的漲落,經過線路放大,產生雜訊。在導體中電子的熱運動是無規則的,有外電場時,在平均電流的背景上,還有一部分漲落電流,它使電信號產生雜訊。 在愛因斯坦關於布朗運動的論文發表之前,1900年法國數學家巴施里葉發表了論述股票的論文《投機理論》,認為根據當前的股價並不能確切知道下一時刻的股價,而只知道下一時刻股價的概率分布。他對股票價格的不規則波動構造了一個數學模型,這個模型與1905年愛因斯坦為布朗運動所建立的模型一致。後來,「股票價格比例變化是一種布朗運動」成為金融研究中的一個普遍假設。
Ⅸ 證券價格服從漂移參數0.05,波動參數0.3的幾何布朗運動,當前價格為95,利率是4% 假設有種
根據題目,若假設有種新型投資,若購買該投資後六個月內證券價格至少為105,並且購買一年後的價格至少和六個月時價格一樣多,那麼這種投資一年後的收益為50。
幾何布朗運動 (GBM)(也叫做指數布朗運動)是連續時間情況下的隨機過程,其中隨機變數的對數遵循布朗運動。[1]幾何布朗運動在金融數學中有所應用,用來在布萊克-斯科爾斯模型(Black-Scholes 模型)中模擬股票價格。本題中,若若假設有種新型投資,若購買該投資後六個月內證券價格至少為105,並且購買一年後的價格至少和六個月時價格一樣多,那麼計算為:50乘exp(-0.04)再乘【S(1/2)>105的概率】再乘【S(1)>S(1/2)的概率,則這種投資一年後的收益為50。
拓展資料:
1.常見隨機過程介紹
1)幾何布朗運動(GBM):這個過程被Black-Scholes(1973)引入到期權定價文獻中,雖然這個過程有一些缺陷,並且與實證研究存在著沖突,但是仍然是一種期權和衍生品估值過程的基礎過程。
2)CIR模型:平方根擴散過程,這種過程由Cox,Ingersoll和Ross(1985)所提出,用於對均值回復的數量,例如利率或波動率進行建模,除了均值回復的特性以外,這個過程還是保持為正數。
3)跳躍擴散過程(Jump Diffusion):首先由Merton(1976)所給出,為幾何布朗運動增加了對數正態分布的條約成分,這允許我們考慮,例如,短期虛值(OTM)的期權通常需要在較大條約的可能性下定價。換句話說,依賴GBM作為金融模型通常不能解釋這種OTM的期權的價格,而跳躍擴散過程可能很好的解釋。
4)Heston模型:是由Steven Heston(1993)提出的描述標的資產波動率變化的數學模型。Heston模型是一個隨機波動模型,這種模型假設資產收益率的波動率並不恆定,也不確定,而是跟隨一個隨機過程來運動。
5)SABR模型:SABR 模型是由Hagan(2002)提出的一種隨機波動率模型,在拋棄了原始的BSM模型中對於波動率為某一常數的假定,假設隱含波動率同樣是符合幾何布朗運動的,並且將隱含波動率設定為標的價格和合約行權價的函數,結合了隱含波動率修正模型的兩種思路(隨機波動率模型和局部波動率模型),更為准確的動態刻畫出吻合市場特徵的隱含波動率曲線。
Ⅹ 為什麼用幾何布朗運動描述股票價格
幾何布朗運動就是物理中典型的隨機運動,其特點就是不可預測,而在股市中的短期股票價格也是不可預測。