r如何計算股票量化投資模型
『壹』 股票價值計算公式詳細計算方法
內在價值V=股利/(R-G)其中股利是當前股息;R為資本成本=8%,當然還有些書籍顯示,R為合理的貼現率;G是股利增長率。
本年價值為: 2.5/(10%-5%) 下一年為 2.5*(1+10%)/(10%-5%)=55。
大部分的收益都以股利形式支付給股東,股東無從股價上獲得很大收益的情況下使用。根據本人理解應該屬於高配息率的大笨象公司,而不是成長型公司。因為成長型公司要求公司不斷成長,所以多數不配發股息或者極度少的股息,而是把錢再投入公司進行再投資,而不是以股息發送。
您可登錄會計學堂官網,免費領取10G會計學習資料;關注會計學堂,學習更多會計知識。
『貳』 如何建立一個股票量化交易模型並模擬
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。
『叄』 計算股票價值的模型有哪些
計算股票價值的模型有:
1、DDM模型(Dividend discount model /股利折現模型)
2、DCF /Discount Cash Flow /折現現金流模型)
3、FCFE ( Free cash flow for the equity equity /股權自由現金流模型)模型
4、FCFF模型( Free cash flow for the firm firm /公司自由現金流模型)。
股票模型:
股票模型就是對於現實中的個股,為了達到盈利目的,作出一些必要的簡化和假設,運用適當的數學分析,得到一個數學結構。
在這里引用數學模型的定義,也可以說,股票建模是利用數學語言(符號、式子與圖象)模擬現實的模型。把現實模型抽象、簡化為某種數學結構是數學模型的基本特徵。它或者能解釋特定現象的現實狀態,或者能預測到對象的未來狀況,或者能提供處理對象的最優決策或控制。
『肆』 R語言怎麼把股票日收盤價轉換成對數收益率
知道一系列收盤價向量X,length=1000,求對數收益率的R語言代碼
acf(int[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly
acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly
log return')
Box.test(int[,2], lag = 5, type = "Ljung-Box")
Box.test(int[,2], lag = 10, type = "Ljung-Box")
Box.test(int.l[,2], lag = 5, type = "Ljung-Box")
Box.test(int.l[,2], lag = 10, type = "Ljung-Box")
運行結錯誤辦
> int <- read.table("d-intc7208.txt", head=T)
錯誤於file(file, "rt") : 打鏈結
外: 警告信息:
In file(file, "rt") :
打文件'd-intc7208.txt': No such file or directory
+ acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly
錯誤: 意外符號 in:
"
acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int"
> log return')
錯誤: 意外符號 in "log return"
『伍』 股票價格滿足的公式P=R/r中R指的是什麼
大寫的R是B選項,即金融證券,股票的收益率。
小寫的r是A選項,及銀行的現行利率。
『陸』 為什麼要用R語言做量化投資
大部分的模塊都有,而且可以調用R語言裡面很多包,要知道這些包可是全世界的統計學家幫你寫好的。只要知道使用原理就可以了。當然亂用的後果自負。
『柒』 如何建立一個股票量化交易模型並模擬
用文化財經軟體,編寫程序化交易系統,具體參考官網教程
『捌』 線性回歸計算中的r怎麼計算
1、r=∑(Xi-X)(Yi-Y)/根號[∑(Xi-X)²×∑(Yi-Y)²]
上式中」∑」表示從i=1到i=n求和;X,Y分別表示Xi,Yi的平均數。
2、簡單線性回歸用於計算兩個連續型變數(如X,Y)之間的線性關系,
具體地說就是計算下面公式中的α和βα和β。
Y=α+βX+εY=α+βX+ε
其中εε稱為殘差,服從從N(0,σ2)N(0,σ2)的正態分布,自由度為(n-1) - (2-1) = n-2 為了找到這條直線的位置,我們使用最小二乘法(least squares approach)。
最小二乘法確保所有點處的殘差的平方和最小時計算α和βα和β,即下面示意圖中∑4i=1ε2i=ε21+ε22+ε23+ε24∑i=14εi2=ε12+ε22+ε32+ε42有最小值。
(8)r如何計算股票量化投資模型擴展閱讀:
線性回歸有很多實際用途。分為以下兩大類:
1、如果目標是預測或者映射,線性回歸可以用來對觀測數據集的和X的值擬合出一個預測模型。當完成這樣一個模型以後,對於一個新增的X值,在沒有給定與它相配對的y的情況下,可以用這個擬合過的模型預測出一個y值。
給定一個變數y和一些變數X1,...,Xp,這些變數有可能與y相關,線性回歸分析可以用來量化y與Xj之間相關性的強度,評估出與y不相關的Xj,並識別出哪些Xj的子集包含了關於y的冗餘信息。
2、趨勢線
一條趨勢線代表著時間序列數據的長期走勢。它告訴我們一組特定數據(如GDP、石油價格和股票價格)是否在一段時期內增長或下降。雖然我們可以用肉眼觀察數據點在坐標系的位置大體畫出趨勢線,更恰當的方法是利用線性回歸計算出趨勢線的位置和斜率。
『玖』 如何開發量化投資模型
4.如何進行量化投資
一個量化投資的交易系統主要包括三個部分,阿爾法模型、風險模型和交易成本模型。
阿爾法模型旨在預測寬客所考慮金融產品的未來趨勢;
風險模型旨在幫助寬客投資不太能帶來收益但會造成損失的敞口規模;
交易成本模型用於幫助確定從目前的投資組合到新的投資組合的交易成本。
目前對於量化交易的研究重點大都集中在對阿爾法模型的研究上。
阿爾法模型
阿爾法模型是量化交易系統的第一個重要組成部分,主要是為了尋找盈利機會。
阿爾法是希臘字母α的音譯,常用於量化表述投資者的盈利能力或投資者得到的與市場波動無關的回報。
阿爾法模型分為:
趨勢形、回復型、技術情緒型、價值型/收益型、成長型和品質型
趨勢型和均值回復型交易策略都依賴價格數據;純技術情緒型的策略比較少見通常都只作為一個輔助因子;而價值型/收益型、成長型和品質型策略都基於基本面數據
趨勢跟隨策略
趨勢跟隨策略是基於以下基本的假定:在一定時間內市場通常朝著同一方向變化,據此對市場趨勢做出判斷就可以作為制定交易策略的依據。常見於期貨市場,最常用移動平均線交叉來定義趨勢。
均值回復策略
均值回復策略的基本理論認為,價格圍繞其價值中樞而上下波動,判斷出這個中樞以及波動的方向便足以捕捉到交易機會。統計套利是用的最多的均值回復策略,認為價格出現背離類似股票的價值終究會縮小到合理的區間范圍。
技術情緒型策略
這一類策略沒有明確的經濟理論支撐,主要通過追蹤投資者情緒相關指標來判斷預期回報,如交易價格、交易量以及波動性指標等。比如觀察期權市場的認沽認購量和隱含波動率做現貨的擇時,再者就是高頻交易通過限價指令簿的形態來判斷近期市場情緒。
價值型/收益型策略
價值型策略主要用於股票交易。這類策略認為市場傾向於高估高風險資產的風險,而低估低風險資產的風險。因此,在適當的時間買入高風險資產和賣出低風險資產,就可以獲得收益。常用的指標有PE(市盈率)、PB(市凈率)等,常應用於股票多空。
成長型策略
成長型策略試圖通過對所考慮資產以往的增長水平進而對未來的走勢進行預測。他認為價格上漲通常都是存在趨勢的,價格上漲最快的產品通常比同類產品更具有優勢,他要求投資者能盡早判斷公司的股價處於增長期,從而捕捉到公司的股價未來更大的上漲幅度。宏觀上常見於外匯市場,例如持有經濟迅速增長的國家的外匯,這些國家的利率比經濟增長緩慢或處於復甦期的經濟體要高;股票市場通常用EPS等指標度量。
品質型策略
這類策略的支持者認為,在其他條件相同的條件下最好買入或持有高品質的產品而做空或減少持有低品質的資產。這類策略比較看重資金的安全,受宏觀市場影響比較大,常用的指標有杠桿比率、收入波動比、管理團隊水平和欺詐風險。
不管是什麼類型的策略最終受益都體現在交易中關於買賣時機的把握和持有頭寸選擇的技巧。
https://uqer.io/community/list 這個社區裡面有很多關於量化的策略,也有很多牛人,可以和他們多討論討論的。
『拾』 固定增長股票價值公式中的 d0(1+g)/Rs-g 怎麼換算出來的 主要是Rs-g不明白!
是依據股票投資的收益率不斷提高的思路,Rs=D1/Po+g股票收益率=股利收益率+資本利得Po=d0(1+g)/Rs-g。
股票是虛擬資本的一種形式,它本身沒有價值。從本質上講,股票僅是一個擁有某一種所有權的憑證。
股票之所以能夠有價,是因為股票的持有人,即股東,不但可以參加股東大會,對股份公司的經營決策施加影響,還享有參與分紅與派息的權利,獲得相應的經濟利益。同理,憑借某一單位數量的股票,其持有人所能獲得的經濟收益越大,股票的價格相應的也就越高。
(10)r如何計算股票量化投資模型擴展閱讀
固定成長股票的價值
如果企業股利不斷穩定增長,並假設每年股利增長均為g,目前的股利為D0,則第t年的股利為:
Dt=D0(1 +g)
固定成長股票的價值的計算公式為:
當g固定時,上述公式可簡化為:
如要計算股票投資的預期報酬率,則只要求出上述公式中Rs即可:
Rs= (D1 /P0) +g
例如,某企業股票目前的股利為4元,預計年增長率為3%,投資者期望的最低報酬率為8%,則該股票的內在價值為:
=82.4(元)
若按82.4元買進,則下年度預計的投資報酬率為:
Rs= (D1 /P0) +g
=4×(1+3%)÷82.4+3%
=8%