股票最小方差投資組合
① 最優風險投資組合和最小方差投資組合有什麼區別根據什麼來比較
當然有區別了,最優風險投資組合實際考慮到的並不只是只有方差這個因素,關鍵是考慮到離散系數(或稱變異系數,這個有多種叫法的),離散系數的計算方法大致是投資組合的標准差除以收益期望值或均值,離散系數越小代表性就越強,一般都是取代表性強的作為最優風險投資組合
② 證券的最小方差如何計算
證券的最小方差的計算方法:
1.組合方差=A投資比例的平方*A的方差+B投資比例的平方*B的方差+2*A投資比例*B投資比例*A標准差*B標准差*A和B的相關系數
=x^2*0.3^2+(1-x)^2*0.25^2+2x(1-x)*0.3*0.25*(-1)
x就是A的投資比例,1-x當然就是B的投資比例了.
求最小方差,對x求一階導數,令其等於0,解出x=5/11(不會求導用拋物線原理也可以)
把x代回計算方差的式子,得到最小方差=0
2.一樣的道理,區別在於完全不相關的A和B,相關系數=0
用期望收益率和方差來計量單一證券的收益率和風險。一個證券組合由一定數量的單一證券構成,每一隻證券佔有一定的比例,我們也可將證券組合視為一隻證券,證券組合的收益率和風險也可用期望收益率和方差來計量。不過,證券組合的期望收益率和方差可以通過由其構成的單一證券的期望收益率和方差來表達。
兩種證券組合的收益和風險
設有兩種證券A和B,某投資者將一筆資金以x的比例投資於證券A,以y的比例投資於證券B,且x+y=1,稱該投資者擁有一個證券組合P。如果到期時,證券A的收益率為a,證券B的收益率為b,則證券組合P的收益率Q為:
Q=ax+by
證券組合中的權數可以為負,比如x<0,則表示該組合賣空了證券A,並將所得的資金連同自有資金買入證券B,因為x+y=1,故有y=1-x>1。投資者在進行投資決策時並不知道x和y的確切值,因而x、y應為隨機變數,對其分布的簡化描述是它們的期望值和方差。投資組合P的期望收益率E和收益率的方差為:E=xa+yb
方差=x的平方×證券A的方差+y的平方×證券B的方差+2xy×證券A的標准差×證券B的標准差×證券組合的相關系數
式中:證券A的標准差×證券B的標准差×證券組合的相關系數--協方差,記為COV(A,B)。
③ 證券組合的叫行域中最小方差組合( )。
【答案】:A
理性投資者只會選擇在有效邊界上的投資組合進行資產配置。在有效邊界上,
上邊界和下邊界的交匯點所代表的組合在所有叫行組合中方差最小,被稱作最小方著組合。在該組合點,投資者承擔的風險最小,因而可供厭惡風險的理性投資者選擇。