量化股票交易建模
A. 如何建立一個股票量化交易模型並模擬
用文化財經軟體,編寫程序化交易系統,具體參考官網教程
B. 如何建立一個股票量化交易模型並模擬
用python:金融想法->數據處理->模型回測->模擬交易->業績歸因->模型修正。
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
量化交易具有以下幾個方面的特點:
1、紀律性。根據模型的運行結果進行決策,而不是憑感覺。紀律性既可以剋制人性中貪婪、恐懼和僥幸心理等弱點,也可以克服認知偏差,且可跟蹤。
2、系統性。具體表現為「三多」。一是多層次,包括在大類資產配置、行業選擇、精選具體資產三個層次上都有模型;二是多角度,定量投資的核心思想包括宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度;三是多數據,即對海量數據的處理。
3、套利思想。定量投資通過全面、系統性的掃描捕捉錯誤定價、錯誤估值帶來的機會,從而發現估值窪地,並通過買入低估資產、賣出高估資產而獲利。
4、概率取勝。一是定量投資不斷從歷史數據中挖掘有望重復的規律並加以利用;二是依靠組合資產取勝,而不是單個資產取勝。
C. 股市中的量化交易是什麼意思呢
量化交易(quantitative Trading)是利用數學、統計、計算機的模型和方法來指導在金融市場的交易,可以自動下單業可以半自動下單,這個不是核心,核心在於是不是系統化交易(systematic trading)。
比如主觀交易會看K線交易,量化交易業會,但區別在於量化交易可以在歷史數據上回測各種交易規則,找到表現好的,然後才用來交易。這或許會有過度擬合的風險,但也有一些方法克服。
量化交易雖然有很多優點,但是真的能戰勝市場,並且保證勝率,我覺得很難說。
D. 數學建模中量化分析模型怎麼建立
用以下幾種方法的一種或幾種結合使用:濕法分析直讀光譜(OES),電感耦合等離子體放射光譜(ICP-AES),電感耦合等離子體質譜儀(ICP-MS),原子吸收光譜(AAS)。
量化模型,是把數理統計學應用於科學數據,以使數理統計學構造出來的模型得到經驗上的支持,並獲得數值結果。這種分析是基於理論與觀察的並行發展,而理論與觀測又通過適當的推斷方法而得以聯系。
如果把證券市場看作一個病人的話,每個投資者就是醫生。但中醫與西醫的診療方法不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,定性程度上大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。
量化投資更像是西醫,依靠模型判斷,模型對於定量投資者的作用就像CT機對於醫生的作用。在每一天的投資運作之前,投資者會先用模型對整個市場進行一次全面的檢查和掃描,然後根據檢查和掃描結果做出投資決策。
被尊為「股神」的沃倫.巴菲特,他在過去的40年間,平均每年的收益率21%左右,而期間標准普爾500指數年均增長率是10%左右,他的收益只是指數的二倍。
因為他注重的是長線操作的定性投資,只靠個人的經驗和智慧來判斷買賣股票。而美國對沖基金經理、哈佛大學數學教授詹姆斯.西蒙斯,他所管理的大獎章基金是從1989年到2006年的17年間,平均每年的收益率到了38.5%,是股神巴菲特的近2倍。
E. 股票交易模型怎樣建立
交易模型即交易理論、交易方法,投資者構建一套完整的交易模型需要經過以下幾個步驟:
1、認清自己的投資偏好,是對自己的一個定位,投資者可以根據自己的性格特點和交易風格先把自己的交易流派區分清楚:趨勢交易者,短線交易者,日內交易者等。
2、在認清自己的投資偏好之後,選擇有針對性的技術指標進行學習,比如,對於趨勢交易者,可以學習均線理論,根據均線理論中多頭排列的特點進行買賣。
3、紙上得來終覺淺,絕知此事需躬行,投資者可以先進行模擬操作,檢驗技術指標的正確性,對自己的交易方法進行總結,歸納出自己交易方法的框架和思路,如果發現自己以往的交易方法和自己的交易流派有沖突時最好重新總結歸納另一套方法。
4、模擬檢驗完成之後,進行實戰,在實戰中,投資者應嚴格按照交易模型執行。
拓展資料:
股票(stock)是股份公司所有權的一部分,也是發行的所有權憑證,是股份公司為籌集資金而發行給各個股東作為持股憑證並藉以取得股息和紅利的一種有價證券。股票是資本市場的長期信用工具,可以轉讓,買賣,股東憑借它可以分享公司的利潤,但也要承擔公司運作錯誤所帶來的風險。每股股票都代表股東對企業擁有一個基本單位的所有權。每家上市公司都會發行股票。
同一類別的每一份股票所代表的公司所有權是相等的。每個股東所擁有的公司所有權份額的大小,取決於其持有的股票數量占公司總股本的比重。
股票是股份公司資本的構成部分,可以轉讓、買賣,是資本市場的主要長期信用工具,但不能要求公司返還其出資。
股票是股份制企業(上市和非上市)所有者(即股東)擁有公司資產和權益的憑證。上市的股票稱流通股,可在股票交易所(即二級市場)自由買賣。非上市的股票沒有進入股票交易所,因此不能自由買賣,稱非上市流通股。
這種所有權為一種綜合權利,如參加股東大會、投票標准、參與公司的重大決策、收取股息或分享紅利等,但也要共同承擔公司運作錯誤所帶來的風險。
股票是一種有價證券,是股份公司在籌集資本時向出資人發行的股份憑證,代表著其持有者(即股東)對股份公司的所有權。股票是股份證書的簡稱,是股份公司為籌集資金而發行給股東作為持股憑證並藉以取得股息和紅利的一種有價證券。每股股票都代表股東對企業擁有一個基本單位的所有權。股票是股份公司資本的構成部分,可以轉讓、買賣或作價抵押,是資金市場的主要長期信用工具。
F. 股票量化交易是什麼意思
股票量化交易,就是將股票市場所有的股票信息,比如股票的漲跌歷史數據,成交量歷史數據,股票的基本面歷史數據,指數漲跌歷史數據等等全部輸入計算機,進行大數據分析,之後根據大數據選擇出炒股成功率最高的方案,並設計成計算機自動操盤模式,稱為量化交易。
量化交易
所謂量化交易,是指以先進的數學模型替代人為的主觀判斷,同時利用計算機技術從龐大的歷史數據中海選出能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
量化選股就是利用數量化的方法選擇股票組合,期望該股票組合能夠獲得超越基準收益率的投資行為,研究表明,板塊、行業輪動在機構投資者的交易中最為獲利的盈利模式是基於行業層面進行周期性和防禦性的輪動配置,這也是機構投資者最普遍採用的策略。此外,周期性股票在擴張性貨幣政策時期表現較好,而在緊縮環境下則支持非周期性行業。行業收益差在擴張性政策和緊縮性政策下具有顯著的差異。
量化交易潛在風險
1、歷史數據的完整性。行情數據不完整可能導致模型與行情數據不匹配。行情數據自身風格轉換,也可能導致模型失敗,如交易流動性,價格波動幅度,價格波動頻率等,而這一點是量化交易難以克服的。
2、模型設計中沒有考慮倉位和資金配置,沒有安全的風險評估和預防措施,可能導致資金、倉位和模型的不匹配,而發生爆倉現象。
3、網路中斷,硬體故障也可能對量化交易產生影響。
4、同質模型產生競爭交易現象導致的風險。
5、單一投資品種導致的不可預測風險。
G. 量化交易都有哪些主要的策略模型
1、Alpha策略
全對沖的叫做Alpha策略,不對沖的在市面上常被稱作指數增強策略。二者所用模型一樣,但後者少了期貨的對沖。缺少對沖有壞處也有好處,壞處是這種策略的收益曲線是會有較大的回撤。但好處方面,在大漲的年份,這種策略的表現會特別好。
2、CTA策略
CTA策略的特點是收益風險比相對Alpha來說會較低。但是在行情較好的年份收益可能會很高,尤其是在早期。而且,無論是在編程還是策略上,CTA入門的難度相對來說都是最低的。
3、高頻交易策略
國內使用高頻交易策略主要應用在,期貨趨勢、期貨套利、期貨做市、股票T+0以及全做市交易,國外機構自營交易,比如美股以及股指等。國內做高頻交易的基本上都是私募,但高頻交易的產品基本上不會對外募集或者極少對外募集。
國內發展趨勢
國內量化投資規模大概是3500到4000億人民幣,其中公募基金1200億,其餘為私募量化基金,數量達300多家,佔比3%(私募管理人共9000多家),金額在2000億左右。
中國證券基金的整體規模超過16萬億,其中公募14萬億,私募2.4萬億,樂觀估計,量化基金管理規模在國內證券基金的佔比在1%~2%,在公募證券基金佔比不到1%,在私募證券基金佔比5%左右,相比國外超過30%的資金來自於量化或者程序化投資,國內未來的增長空間巨大。
H. 量華網上的量化交易有哪些主要的策略模型
國內的量化策略可以簡單分為三個類型,Alpha策略,CTA策略以及高頻交易策略。其中主要的是Alpha策略和CTA策略。
I. 如何建立量化交易模型
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統
J. 散戶如何做量化交易
量化交易是指投資者將交易策略的邏輯與參數經過電腦程序運算後,將交易策略系統化,然後通過電腦自動下單來完成交易。
在量化交易過程中,散戶可以這樣做:
1、根據個股的歷史數據,進行多因子選股,比如,把市盈率、市凈率、市銷率等作為選股標准,選出一些價值被低估,或者處於合理區域的個股。
2、順勢交易,即在上漲的趨勢中買入,在下跌的趨勢中賣出。
3、進行合理的倉位管理,即採取漏斗形倉位管理法、矩形倉位管理法、金字塔形倉位管理法等,好應對個股後期的風險。
4、再根據個股的歷史走勢,尋找個股的支撐位和壓力位,把它們作為止損、止盈點,即在壓力位置,且獲得收益的時候及時賣出;在跌破支撐位時,且股票虧損的時候及時賣出股票,避免更大的損失。