貝葉斯定理和股票交易
⑴ 什麼時候用全概率公式和貝葉斯公式
對一個較復雜的事件A,如果能找到一伴隨A發生的完備事件組B1、B2```,而計算各個B的概率與條件概率P(A/Bi)相對又要容易些,這是為了計算與事件A有關的概率,可能需要使用全概率公式和Bayes公式。
1、全概率公式為概率論中的重要公式,它將對一復雜事件A的概率求解問題轉化為了在不同情況下發生的簡單事件的概率的求和問題。
內容:如果事件B1、B2、B3…Bn 構成一個完備事件組,即它們兩兩互不相容,其和為全集;並且P(Bi)大於0,則對任一事件A有
P(A)=P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)。
或者:p(A)=P(AB1)+P(AB2)+...+P(ABn)),其中A與Bn的關系為交)。
2、貝葉斯定理是關於隨機事件A和B的條件概率(或邊緣概率)的一則定理。其中P(A|B)是在B發生的情況下A發生的可能性。
早在18世紀,英國學者貝葉斯(1702~1761)曾提出計算條件概率的公式用來解決如下一類問題:假設H[1],H[2]…,H[n]互斥且構成一個完全事件,
已知它們的概率P(H[i]),i=1,2,…,n,現觀察到某事件A與H[1],H[2]…,H[n]相伴隨機出現,且已知條件概率P(A|H[i]),求P(H[i]|A)。
(1)貝葉斯定理和股票交易擴展閱讀
先驗概率區別
1、先驗概率不是根據有關自然狀態的全部資料測定的,而只是利用現有的材料(主要是歷史資料)計算的;後驗概率使用了有關自然狀態更加全面的資料,既有先驗概率資料,也有補充資料;
2、先驗概率的計算比較簡單,沒有使用貝葉斯公式;而後驗概率的計算,要使用貝葉斯公式,而且在利用樣本資料計算邏輯概率時,還要使用理論概率分布,需要更多的數理統計知識。
⑵ 如何理解需求定理和股票房地產的買漲不買跌
1.這個可以利用囚徒困境效應來分析:先下手為強,後下手遭殃,結果是一哄而上,大家都遭高房價的殃,當然那些沒下手的就更遭殃了;
2.預期收益效應,這是囚徒困境的延伸:先買的可以享受漲價的好處,都想買在別人前面,結果就是越漲越買。
3.「賣點」理論:」買一套正在漲的房子「比」買一套正在跌的房子「更容易在心理上向他人交代,這就是銷售理論中的」賣點「。
⑶ 貝葉斯定理是什麼我知道公式是什麼,能不能用例子給我講清楚點
貝葉斯定理用於投資決策分析是在已知相關項目B的資料,而缺乏論證項目A的直接資料時,通過對B項目的有關狀態及發生概率分析推導A項目的狀態及發生概率。如果我們用數學語言描繪,即當已知事件Bi的概率P(Bi)和事件Bi已發生條件下事件A的概率P(A│Bi),則可運用貝葉斯定理計算出在事件A發生條件下事件Bi的概率P(Bi│A)。按貝葉斯定理進行投資決策的基本步驟是: 1 列出在已知項目B條件下項目A的發生概率,即將P(A│B)轉換為 P(B│A); 2 繪制樹型圖; 3 求各狀態結點的期望收益值,並將結果填入樹型圖; 4 根據對樹型圖的分析,進行投資項目決策; 搜索巨人Google和Autonomy,一家出售信息恢復工具的公司,都使用了貝葉斯定理(Bayesian principles)為數據搜索提供近似的(但是技術上不確切)結果。研究人員還使用貝葉斯模型來判斷症狀和疾病之間的相互關系,創建個人機器人,開發能夠根據數據和經驗來決定行動的人工智慧設備。
⑷ 貝葉斯原理及應用
貝葉斯決策理論是主觀貝葉斯派歸納理論的重要組成部分。貝葉斯決策就是在不完全情報下,對部分未知的狀態用主觀概率估計,然後用貝葉斯公式對發生概率進行修正,最後再利用期望值和修正概率做出最優決策。貝葉斯決策理論方法是統計模型決策中的一個基本方法,其基本思想是:1、已知類條件概率密度參數表達式和先驗概率。2、利用貝葉斯公式轉換成後驗概率。3、根據後驗概率大小進行決策分類。他對統計推理的主要貢獻是使用了"逆概率"這個概念,並把它作為一種普遍的推理方法提出來。貝葉斯定理原本是概率論中的一個定理,這一定理可用一個數學公式來表達,這個公式就是著名的貝葉斯公式。 貝葉斯公式是他在1763年提出來的:假定B1,B2,……是某個過程的若干可能的前提,則P(Bi)是人們事先對各前提條件出現可能性大小的估計,稱之為先驗概率。如果這個過程得到了一個結果A,那麼貝葉斯公式提供了我們根據A的出現而對前提條件做出新評價的方法。P(Bi∣A)既是對以A為前提下Bi的出現概率的重新認識,稱 P(Bi∣A)為後驗概率。經過多年的發展與完善,貝葉斯公式以及由此發展起來的一整套理論與方法,已經成為概率統計中的一個冠以「貝葉斯」名字的學派,在自然科學及國民經濟的許多領域中有著廣泛應用。公式:設D1,D2,……,Dn為樣本空間S的一個劃分,如果以P(Di)表示事件Di發生的概率,且P(Di)>0(i=1,2,…,n)。對於任一事件x,P(x)>0,則有: nP(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di)i=1( http://wiki.mbalib.com/w/images/math/9/9/b/.png)貝葉斯預測模型在礦物含量預測中的應用 貝葉斯預測模型在氣溫變化預測中的應用 貝葉斯學習原理及其在預測未來地震危險中的應用 基於稀疏貝葉斯分類器的汽車車型識別 信號估計中的貝葉斯方法及應用 貝葉斯神經網路在生物序列分析中的應用 基於貝葉斯網路的海上目標識別 貝葉斯原理在發動機標定中的應用 貝葉斯法在繼電器可靠性評估中的應用 相關書籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》 Springer 《貝葉斯決策》 黃曉榕 《經濟信息價格評估以及貝葉斯方法的應用》 張麗 , 閆善文 , 劉亞東 《全概率公式與貝葉斯公式的應用及推廣》 周麗琴 《貝葉斯均衡的應用》 王輝 , 張劍飛 , 王雙成 《基於預測能力的貝葉斯網路結構學習》 張旭東 , 陳鋒 , 高雋 , 方廷健 《稀疏貝葉斯及其在時間序列預測中的應用》 鄒林全 《貝葉斯方法在會計決策中的應用》 周麗華 《市場預測中的貝葉斯公式應用》 夏敏軼 , 張焱 《貝葉斯公式在風險決策中的應用》 臧玉衛 , 王萍 , 吳育華 《貝葉斯網路在股指期貨風險預警中的應用》 黨佳瑞 , 胡杉杉 , 藍伯雄 《基於貝葉斯決策方法的證券歷史數據有效性分析》 肖玉山 , 王海東 《無偏預測理論在經驗貝葉斯分析中的應用》 嚴惠雲 , 師義民 《Linex損失下股票投資的貝葉斯預測》 卜祥志 , 王紹綿 , 陳文斌 , 余貽鑫 , 岳順民 《貝葉斯拍賣定價方法在配電市場定價中的應用》 劉嘉焜 , 范貽昌 , 劉波 《分整模型在商品價格預測中的應用》 《Bayes方法在經營決策中的應用》 《決策有用性的信息觀》 《統計預測和決策課件》 《貝葉斯經濟時間序列預測模型及其應用研究》 《貝葉斯統計推斷》 《決策分析理論與實務》
⑸ 全概率公式和貝葉斯公式的成立條件是什麼呢
在一個復雜事件Q中,整個事件被分為(B1,B2,B3.......Bn)塊,且它們之間沒有交叉,稱為事件Q的一個劃分,如果叫你求在這個復雜事件Q中事件A發生的概率,這樣就可以使用全概率公式;
貝葉斯是全概率公式的逆問題,條件應該是一樣的
⑹ 全概率和貝葉斯公式是什麼
1、全概率公式為概率論中的重要公式,它將對一復雜事件A的概率求解問題轉化為了在不同情況下發生的簡單事件的概率的求和問題。
內容:如果事件B1、B2、B3…Bn 構成一個完備事件組,即它們兩兩互不相容,其和為全集;並且P(Bi)大於0,則對任一事件A有P(A)=P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)。
2、貝葉斯定理是關於隨機事件A和B的條件概率(或邊緣概率)的一則定理。其中P(A|B)是在B發生的情況下A發生的可能性。已知它們的概率P(H[i]),i=1,2,…,n,現觀察到某事件A與H[1],H[2]…,H[n]相伴隨機出現,且已知條件概率P(A|H[i]),求P(H[i]|A)。
(6)貝葉斯定理和股票交易擴展閱讀:
概率論的一個重要內容是研究怎樣從一些較簡單事件概率的計算來推算較復雜事件的概率,全概率公式和Bayes公式正好起到了這樣的作用。對一個較復雜的事件A,如果能找到一伴隨A發生的完備事件組B1、B2```,而計算各個B的概率與條件概率P(A/Bi)相對又要容易些,這是為了計算與事件A有關的概率,可能需要使用全概率公式和Bayes公式。
⑺ 貝葉斯定理厲害在哪裡有哪些驚為天人的應用
比如,天氣預報說,明天降雨的概率是30%。這是什麼意思呢?因為我們無法像計算頻率概率那樣,重復地把明天過上100次,然後計算出大約有30次會下雨,所以只能利用有限的信息(過去天氣的測量數據),採用貝葉斯定理來預測出明天下雨的概率是多少。同樣的,在現實世界中,我們每個人都需要預測。要想深入分析未來、思考是否買股票、政策給自己帶來哪些機遇、提出新產品構想,或者只是計劃一周的飯菜。貝葉斯定理就是為了解決這些問題而誕生的,它可以根據過去的數據來預測出概率。貝葉斯定理的思考方式為我們提供了明顯有效的方法來幫助我們提供能力,以便更好地預測未來的商業、金融、以及日常生活。
⑻ 貝葉斯定理公式求教!
貝葉斯定理用來描述兩個條件概率之間的關系,貝葉斯定理公式:P(A|B)=P(B|A)*P(A)/P(B) 如上公式也可變形為:P(B|A)=P(A|B)*P(B)/P(A)
⑼ 怎麼簡單理解貝葉斯公式
貝葉斯定理是關於隨機事件A和B的條件概率(或邊緣概率)的一則定理。
其中P(A|B)是在B發生的情況下A發生的可能性。
人們根據不確定性信息作出推理和決策需要對各種結論的概率作出估計,這類推理稱為概率推理。概率推理
既是概率學和邏輯學的研究對象,也是心理學的研究對象,但研究的角度是不同的。概率學和邏輯學研究的是客觀概率推算的公式或規則;而心理學研究人們主觀概率估計的認知加工過程規律。貝葉斯推理的問題是條件概率推理問題,這一領域的探討對揭示人們對概率信息的認知加工過程與規律、指導人們進行有效的學習和判斷決策都具有十分重要的理論意義和實踐意義。
貝葉斯定理也稱貝葉斯推理,早在18世紀,英國學者貝葉斯(1702~1763)曾提出計算條件概率的公式用來解決如下一類問題:假設H[1],H[2]…,H[n]互斥且構成一個完全事件,已知它們的概率P(H[i]),i=1,2,…,n,現觀察到某事件A與H[,1],H[,2]…,H[,n]相伴隨機出現,且已知條件概率P(A/H[,i]),求P(H[,i]/A)。
貝葉斯公式(發表於1763年)為: P(H[i]|A)=P(H[i])*P(A│H[i])/{P(H[1])*P(A│H[1]) +P(H[2])*P(A│H[2])+…+P(H[n])*P(A│H[n])}
這就是著名的「貝葉斯定理」,一些文獻中把P(H[1])、P(H[2])稱為基礎概率,P(A│H[1])為擊中率,P(A│H[2])為誤報率[1][