python写股票软件下载
⑴ 用Python怎么做量化投资
本文将会讲解量化投资过程中的基本流程,量化投资无非这几个流程,数据输入------策略书写------回测输出
其中策略书写部分还涉及到编程语言的选择,如果不想苦恼数据输入和回测输出的话,还要选择回测平台。
一、数据
首先,必须是数据,数据是量化投资的基础
如何得到数据?
Wind:数据来源的最全的还是Wind,但是要付费,学生可以有免费试用的机会,之后还会和大家分享一下怎样才Wind里摘取数据,Wind有很多软件的借口,Excel,Matlab,Python,C++。
预测者网:不经意间发现,一个免费提供股票数据网站 预测者网,下载的是CSV格式
TB交易开拓者:Tradeblazer,感谢@孙存浩提供数据源
TuShare:TuShare -财经数据接口包,基于Python的财经数据包,利用Python进行摘取
如何存储数据?
Mysql
如何预处理数据?
空值处理:利用DataFrame的fill.na()函数,将空值(Nan)替换成列的平均数、中位数或者众数
数据标准化
数据如何分类?
行情数据
财务数据
宏观数据
二、计算语言&软件
已经有很多人在网上询问过该选择什么语言?笔者一开始用的是matlab,但最终选择了python
python:库很多,只有你找不到的,没有你想不到,和量化这块结合比较紧密的有:
Numpy&Scipy:科学计算库,矩阵计算
Pandas:金融数据分析神器,原AQR资本员工写的一个库,处理时间序列的标配
Matplotlib:画图库
scikit-learn:机器学习库
statsmodels:统计分析模块
TuShare:免费、开源的python财经数据接口包
Zipline:回测系统
TaLib:技术指标库
matlab:主要是矩阵运算、科学运算这一块很强大,主要有优点是WorkSpace变量可视化
python的Numpy+Scipy两个库完全可以替代Matlab的矩阵运算
Matplotlib完克Matlab的画图功能
python还有很多其他的功能
pycharm(python的一款IDE)有很棒的调试功能,能代替Matlab的WorkSpace变量可视化
推荐的python学习文档和书籍
关于python的基础,建议廖雪峰Python 2.7教程,适合于没有程序基础的人来先看,涉及到python的基本数据类型、循环语句、条件语句、函数、类与对象、文件读写等很重要的基础知识。
涉及到数据运算的话,其实基础教程没什么应用,python各类包都帮你写好了,最好的学习资料还是它的官方文档,文档中的不仅有API,还会有写实例教程
pandas文档
statsmodels文档
scipy和numpy文档
matplotlib文档
TuShare文档
第二,推荐《利用Python进行数据分析》,pandas的开发初衷就是用来处理金融数据的
三、回测框架和网站
两个开源的回测框架
PyAlgoTrade - Algorithmic Trading
Zipline, a Pythonic Algorithmic Trading Library
⑵ 怎样用Python写一个股票自动交易的程序
方法一前期的数据抓取和分析可能python都写好了庆察,所以差这交易指令接口最后一步。
对于股票的散户,正规的法子是华宝,国信,兴业这样愿意给接口的券商,但貌似开户费很高才给这权利,而且只有lts,ctp这样的c++接口,没python版就需要你自己封装。方法二是wind这样的软件也有直镇拦接的接口,支持部分券商,但也贵,几万一年是要的。方法三鼠标键盘模拟法,很复杂的,就是模拟键盘鼠标去操作一些软件,比如券商版交易软件和大智慧之类的。方法四就是找到这些软件的关于交易指令的底层代码并更改,不过T+1的规则下,预誉旅茄测准确率的重要性高于交易的及时性,花功夫做数据分析就好,交易就人工完成吧⑶ 《Python与量化投资从基础到实战》pdf下载在线阅读,求百度网盘云资源
《07 Python股票量化投资课程(完结)》网络网盘资源免费下载
链接:https://pan..com/s/1MgFE6VMeR8H6YkS2jxEZmw
07 Python股票量化投资课程(完结)|09课后大作业|08第八课资料|07第七课资料|06第六课资料|05第五课资料|04第四课资料|03第三课资料|02第二课资料|01第一课资料|25人工智能与量化投资(下).mp4|24人工智能与量化投资(上).mp4|23实盘交易(下).mp4|22实盘交易(中).mp4|21实盘交易(上).mp4
⑷ 怎样用 Python 写一个股票自动交易的程序
股票自动交易助手提供了一个 Python 自动下单接口,参考代码
#股票自动交易助手Python自动下单使用例子
#把此脚本和StockOrderApi.pyOrder.dll放到你自己编写的脚本同一目录
fromStockOrderApiimport*
#买入测试
#Buy(u"600000",100,0,1,0)
#卖出测试,是持仓股才会有动作
#Sell(u"000100",100,0,1,0)
#账户信息
print("股票自动交易接口测试")
print("账户信息")
print("--------------------------------")
arrAccountInfo=["总资产","可用资金","持仓总市值","总盈利金额","持仓数量"];
foriinrange(0,len(arrAccountInfo)):
value=GetAccountInfo(u"",i,0)
print("%s%f"%(arrAccountInfo[i],value))
print("--------------------------------")
print("")
print("股票持仓")
print("--------------------------------")
#取出所有的持仓股票代码,结果以','隔开的
allStockCode=GetAllPositionCode(0)
allStockCodeArray=allStockCode.split(',')
foriinrange(0,len(allStockCodeArray)):
vol=GetPosInfo(allStockCodeArray[i],0,0)
changeP=GetPosInfo(allStockCodeArray[i],4,0)
print("%s%d%.2f%%"%(allStockCodeArray[i],vol,changeP))
print("--------------------------------")
⑸ 股票池如何用python构建
股票池用python构建的方法是:使用第三方平台,目前可以使用的是聚宽,对比一下聚宽、优矿、大宽网(已经倒闭了),都大同小异,选哪个都一样。
虽然这些平台都大同小异,但是代码可不能简单复制粘贴,因为底层函数库是不一样的,有可能在别的平台根本用不了某个函数,并且简单复制到自己电脑中的python的话百分之百用不了。
代码的思路是,每个月底进行调仓,选出市值最小的股票交易,去掉ST/*ST/停牌/涨停的股票,然后选择最小市值的10只,基准是创业板综指,看看结果。
python构建数据获取方法是:
这里使用为了接下来的操作需要将一定历史范围的股票数据下载下来,这里下载起始时间为20160101,截至时间为运行代码的时间范围的历史日线数据。
这里以tushare为例, tushare获取历史数据有两种方式。
第一种是以迭代历史交易日的方式获取所有历史数据,假设获取三年的历史数据,一年一般220个交易日左右,那么3年需要请求660多次左右,如果以这种方式的话,就下载数据的时间只需要1分钟多点的样子。
第二种是以迭代所有股票代码的方式获取所有历史数据,股票数量有大概3800多个,需要请求3800多次,但是在积分有限的情况下一分钟最多请求500次,也就意味着仅下载数据的时间至少需要大概8分钟时间。
理论上,你获取的历史范围超过17.3年,那么使用第一种方式才比第二种方式快。
⑹ 怎样用python处理股票
用Python处理股票需要获取股票数据,以国内股票数据为例,可以安装Python的第三方库:tushare;一个国内股票数据获取包。可以在网络中搜索“Python tushare”来查询相关资料,或者在tushare的官网上查询说明文档。
⑺ python用什么方法或者库可以拿到全部股票代码
首先你需要知道哪个网站上有所有股票代码,然后分析这个网站股票代码的存放方式,再利用python写一个爬虫去爬取所有的股票代码