股票软件可以爬数据吗
1. 如何用爬虫抓取股市数据并生成分析报表
1. 关于数据采集
股票数据是一种标准化的结构数据,是可以通过API接口访问的(不过一般要通过渠道,开放的API有一定的局限性)。也可以通过爬虫软件进行采集,但是爬虫软件采集数据不能保证实时性,根据数据量和采集周期,可能要延迟几十秒到几分钟不等。我们总结了一套专业的爬虫技术解决方案(Ruby + Sidekiq)。能够很快实现这个采集,也可以后台可视化调度任务。
2. 关于展现
网络股票数据的展现,网页端直接通过HTML5技术就已经足够,如果对界面要求高一点,可以采用集成前端框架,如Bootstrap;如果针对移动端开发, 可以使用Ionic框架。
3. 关于触发事件
如果是采用Ruby on Rails的开发框架的话,倒是很方便了,有如sidekiq, whenever这样子的Gem直接实现任务管理和事件触发。
2. 用什么软件可以导出股票的数据,如成交量,换手率,价格等。我用了很多软件同花顺,通信达,大智慧都导不
通信达可以导出开盘、最高、最低、收盘、成交量等数据。
按键盘:34。
或按菜单:系统 — 数据导出,格式为文本(.TXT)文档或Excel(.XLS)文件。
3. 炒股软件的实时数据是怎么获取的
如果你只是需要进行实时选股,则可以采用通达信、大智慧、同花顺等看盘软件。通达信、大智慧等软件中有一个“鹰眼盯盘”的功能(各家叫法不同,但意思一样的),结合自己在这些软件中编写的自编公式、指标,可实现实时的的股票监控。
如果你需要的是实时获取股票数据,则有专门的股票实时行情API接口,例如微盛的股票实时API接口,通过这样的接口,编程即可取得实时的股票数据。
4. 如何用爬虫抓取股市数据并生成分析报表
推荐个很好用的软件,我也是一直在用的,就是前嗅的ForeSpider软件,
我是一直用过很多的采集软件,最后选择的前嗅的软件,ForeSpider这款软件是可视化的操作。简单配置几步就可以采集。如果网站比较复杂,这个软件自带爬虫脚本语言,通过写几行脚本,就可以采集所有的公开数据。
软件还自带免费的数据库,数据采集直接存入数据库,也可以导出成excel文件。
如果自己不想配置,前嗅可以配置采集模板,我的模板就是从前嗅购买的。
另外他们公司不光是软件好用,还有自己的数据分析系统,直接采集完数据后入库,ForeSpider内部集成了数据挖掘的功能,可以快速进行聚类分类、统计分析等,采集结果入库后就可以形成分析报表。
最主要的是他采集速度非常快,我之前用八爪鱼的软件,开服务器采,用了一个月采了100万条,后来我用ForeSpider。笔记本采的,一天就好几百万条。
这些都是我一直用前嗅的经验心得,你不妨试试。
建议你可以下载一个免费版试一试,免费版不限制功能,没有到期时间。
5. 如何通过软件抓取新浪财经里单只股票数据
如果你是准备抓历史数据,那还不如直接使用免费的wdz程序,沪深1990年至今的全部日线历史;2000年至今十几年的5分钟数据都可以直接输出,而且可转化为各种格式。根本不用去新浪中抓取。
6. 如何使用Python获取股票分时成交数据
可以使用爬虫来爬取数据,在写个处理逻辑进行数据的整理。你可以详细说明下你的需求,要爬取的网站等等。
希望我的回答对你有帮助
7. 股市数据如何获取
股票数据如何获取股票的数据有很多,只要你是查隐形的数据,还是明面的数据一般情况下一个股票你打开他的。研报可以查看他的近期状况也可以看她的财务查看ta的财务数据。也可以查他的十大股东。
8. 怎么在股市期间实时抓取rsi数据
怎么样在股市期间,实时抓出rsi数据?
请看下面的分享
i问财财经搜索是同花顺旗下的服务之一,主要针对上市公司的公告、研报、即时新闻等提供搜索及参考资料。
相对于其他股票软件来说,一个强大之处在于用自然语言就可以按你指定的条件进行筛选。而大部分现有的行情软件支持的都不是很好,写起来就费尽心思,还不一定能行。
然而i问财有一个缺陷在于它只能获取一天的股票相关信息。如果,我们希望实现抓取一段时间的股票历史信息,就要通过网页批量抓取。
事实上,我们可以通过制作一个爬虫软件来自己定义时间日期和搜索的关键词,并且批量下载一定日期范围的数据。
我们以抓取每天的收盘价大于均线上股票数目为例子,用r来实现抓取:
因此,我们在r中可以通过制作一个时间段的伪链接来向服务器不断发送搜索请求,从而实现一段日期数据的批量抓取
url=paste("股票 - i问财财经搜索",as.character(as.Date(i, origin = "1970-01-01")) ,input2)
然后,我们查看其中一天的网页源代码,可以找到对应股票数据的xml源码。
9. 哪些股票行情软件可以用函数实时提取每分钟的数据(成交额/最高价/最低价/收盘价等)
同花顺和大智慧,接口开放最多的是新浪,金融机构一般用万得调数据。
可以关注我,有问题再联系。
10. 如何编程从免费股票软件中提取实时数据
自己写程序的话,一种方法是从已提供的信息源,例如webservice获取数据。还有种办法就是去连接提供即时信息的网页硬解析。
代码举例如下:
Created on Thu Jul 23 09:17:27 2015
@author: jet
"""
DAY_PRICE_COLS = ['date', 'open', 'high', 'close', 'low', 'volume',
'chg', '%chg', 'ma5', 'ma10', 'ma20',
'vma5', 'vma10', 'vma20', 'turnover']
DAY_PRICE_URL = '%sapi.finance.%s/%s/?code=%s&type=last'
INDEX_KEY = ['SH', 'SZ', 'HS300', 'SZ50', 'GEB', 'SMEB']
INDEX_LIST = {'SH': 'sh000001', 'SZ': 'sz399001', 'HS300': 'sz399300',
'SZ50': 'sh000016', 'GEB': 'sz399006', 'SMEB': 'sz399005'}
INDEX_DAY_PRICE_COLS= ['date', 'open', 'high', 'close', 'low', 'volume',
'chg', '%chg', 'ma5', 'ma10', 'ma20',
'vma5', 'vma10', 'vma20']
K_TYPE_KEY = ['D', 'W', 'M']
K_TYPE_MIN_KEY = ['5', '15', '30', '60']
K_TYPE = {'D': 'akdaily', 'W': 'akweekly', 'M': 'akmonthly'}
MIN_PRICE_URL = '%sapi.finance.%s/akmin?scode=%s&type=%s'
PAGE_TYPE = {'http': 'http://', 'ftp': 'ftp://'}
PAGE_DOMAIN = {'sina': 'sina.com.cn', 'ifeng': 'ifeng.com'}
URL_ERROR_MSG = '获取失败,请检查网络状态,或者API端口URL已经不匹配!'
get_hist_data.py
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 23 09:15:40 2015
@author: jet
"""
import const as ct
import pandas as pd
import json
from urllib2 import urlopen,Request
def get_hist_data(code = None, start = None, end = None, ktype = 'D'):
"""
功能:
获取个股历史交易数据
--------
输入:
--------
code:string
股票代码 比如:601989
start:string
开始日期 格式:YYYY-MM-DD 为空时取到API所提供的最早日期数据
end:string
结束日期 格式:YYYY-MM-DD 为空时取到最近一个交易日数据
ktype:string(default=D, 函数内部自动统一为大写)
数据类型 D=日K线,W=周K线,M=月K线,5=5分钟,15=15分钟
30=30分钟,60=60分钟
输出:
--------
DataFrame
date 日期
open 开盘价
high 最高价
close 收盘价
low 最低价
chg 涨跌额
p_chg 涨跌幅
ma5 5日均价
ma10 10日均价
ma20 20日均价
vma5 5日均量
vma10 10日均量
vma20 20日均量
turnover换手率(指数无此项)
"""
code = code_to_APIcode(code.upper())
ktype = ktype.upper()
url = ''
url = get_url(ktype, code)
print(url)
js = json.loads(ping_API(url))
cols = []
if len(js['record'][0]) == 14:
cols = ct.INDEX_DAY_PRICE_COLS
else:
cols = ct.DAY_PRICE_COLS
df = pd.DataFrame(js['record'], columns=cols)
if ktype in ct.K_TYPE_KEY:
df = df.applymap(lambda x:x.replace(u',', u''))
for col in cols[1:]:
df[col]=df[col].astype(float)
if start is not None:
df = df [df.date >= start]
if end is not None:
df = df[df.date <= end]
df = df.set_index('date')
return df
def code_to_APIcode(code):
"""
功能:
验证输入的股票代码是否正确,若正确则返回API对应使用的股票代码
"""
print(code)
if code in ct.INDEX_KEY:
return ct.INDEX_LIST[code]
else:
if len(code) != 6:
raise IOError('code input error!')
else:
return 'sh%s'%code if code[:1] in ['5', '6'] else 'sz%s'%code
def get_url(ktype, code):
"""
功能:
验证输入的K线类型是否正确,若正确则返回url
"""
if ktype in ct.K_TYPE_KEY:
url = ct.DAY_PRICE_URL % (ct.PAGE_TYPE['http'], ct.PAGE_DOMAIN['ifeng'],
ct.K_TYPE[ktype], code)
return url
elif ktype in ct.K_TYPE_MIN_KEY:
url = ct.MIN_PRICE_URL % (ct.PAGE_TYPE['http'], ct.PAGE_DOMAIN['ifeng'],
code, ktype)
return url
else:
raise IOError('ktype input error!')
def ping_API(url):
"""
功能:
向API发送数据请求,若链接正常返回数据
"""
text = ''
try:
req = Request(url)
text = urlopen(req,timeout=10).read()
if len(text) < 15:
raise IOError('no data!')
except Exception as e:
print(e)
else:
return text
#测试入口
print(get_hist_data('601989','2015-07-11','2015-07-22'))